長方形配置の円孔群をもつ無限体の引張り : 応力集中係数と引張剛性の計算式
スポンサーリンク
概要
- 論文の詳細を見る
This paper is concerned with a theoretical analysis of a rectangular array of circular holes in a solid under uniaxial tension. In the analysis, we choose a suitable unit region, and express Laurent series expansions for the complex potentials in forms satisfying the traction-free conditions along the circular hole edge. Then the unknown coefficients in the Laurent series are determined from the boundary conditions at the outer edges of the used unit region. At this stage, we use a procedure based on element-wise resultant forces and displacements in order to get highly accurate results. Numerical results of the stress concentration factors, and the tensile stiffnesses of the solids with the holes, are given for various values of the parameters. The results are fitted to reliable polynomial formulae for convenience of engineering applications.
- 久留米工業大学の論文
- 1998-12-20
著者
関連論文
- 長方形配置および千鳥配置のだ円孔群をもつ無限体の引張り : 最大応力と引張剛性の計算式
- 長方形配置および千鳥配置のき裂群をもつ無限体の面内せん断における応力拡大係数とせん断剛性の計算式
- 周期配列の剛体扁平介在物群をもつ無限体の引張り
- 境界要素法を援用した光弾性主応力解析
- 複数個のき裂をもつ長方形板の引張り
- 体積力法による偏心き裂をもつ長方形単位領域の解析
- Formulae of Maximum Stresses and Tensile Stiffnesses for Rectangular Array and Zig-zag Array of Elliptical Holes in Solids under Uniaxial Tension
- 長方形配置の円孔群をもつ無限体の引張り : 応力集中係数と引張剛性の計算式