On the Diophantine Equations a^x-b^yc^z=±1,±2({a,b,c}={2,3,5})
スポンサーリンク
概要
- 論文の詳細を見る
It is proven that the Diophantine equations a^x-b^yc^z=±1, ±2 have only eleven solutions where x, y and z are positive integers and {a,b,c}={2,3,5}.
- 岐阜工業高等専門学校の論文
- 1986-03-20
著者
関連論文
- 数式処理ソフトMathematicaを用いた物理と数学の動画教材
- Mathematicaを用いた数学・理科教育の試み
- On the Theorem of Apery
- On the Diophantine Equations a^x-b^yc^z=±1,±2({a,b,c}={2,3,5})
- On the Diophantine equation x^2+15^m=17^n
- On the Diophantine Equation x^2+D=p^n
- On the Diophantine Equation X^2+49=p^n
- On the Generalized Ramanujan-Nagell Equation
- 2次体の類数が1であることの判定法について (整数論)
- On a Complex Continued Fraction Algorithm