On the Generalized Ramanujan-Nagell Equation
スポンサーリンク
概要
- 論文の詳細を見る
Let D be a positive integer and p an odd prime not dividing D. If D≡31 or 33 (mod 64) then the diophantine equation x^2+D=p^n has at most one solution in positive integers x, n. If D≡49 or 81 (mod 128) and p>2D then the equation has at most one solution. In particular the equation x^2+31=p^n has at most one solution. This equation was not able to be tackled yet by the theorems known in literature.
- 岐阜工業高等専門学校の論文
- 1983-02-28
著者
関連論文
- 数式処理ソフトMathematicaを用いた物理と数学の動画教材
- Mathematicaを用いた数学・理科教育の試み
- On the Theorem of Apery
- On the Diophantine Equations a^x-b^yc^z=±1,±2({a,b,c}={2,3,5})
- On the Diophantine equation x^2+15^m=17^n
- On the Diophantine Equation x^2+D=p^n
- On the Diophantine Equation X^2+49=p^n
- On the Generalized Ramanujan-Nagell Equation
- 2次体の類数が1であることの判定法について (整数論)
- On a Complex Continued Fraction Algorithm