随伴次数環の正準加群への埋め込み
スポンサーリンク
概要
- 論文の詳細を見る
Let [numerical formula] be the Cohen-Macaulay graded ring associated to a filtration of ideals [numerical formula] in a Gorenstein local ring A. We firstly give a criteron for 〓(〓) to be a Gorenstein ring in terms of a certain embedding of the ring 〓(〓) into it's canonical module K_<〓(〓)>. Secondly we explore the case F_i=I^i(i∈Z) for sbme equi-multiple ideal I in A. the structure of the 〓-filtration ω={ω_i}_<i∈Z> of the base ring A with [numerical formula] will be explicitly described in terms of the minimal reduction Q of I. Some consequences and applications are given.
- 明治大学の論文
著者
-
後藤 四郎
Department of Mathematics School of Science and Technology, Meiji University
-
居相 真一郎
Department of Mathematics School of Science and Technology, Meiji University
-
吉田 淳
Department Of Mathematic School Of Science And Technology Meiji University
-
居相 真一郎
Department Of Mathematics School Of Science And Technology Meiji University
関連論文
- 有限群のRees代数への作用とその不変部分環のGorenstein性について(II)
- 随伴次数環の正準加群への埋め込み
- 有限群のRees代数への作用とその不変部分環のGorenstein性について
- イデアル化によって得られたArtin Gorenstein局所環内のgood idealsの構造と分布について