有限群のRees代数への作用とその不変部分環のGorenstein性について(II)
スポンサーリンク
概要
- 論文の詳細を見る
Let g be a finite group which acts on a commutative ring A, I a g-stable ideal of A. The action of g is naturally extended to the Rees algebra R(I) and the associated graded ring G(I) of I. This paper gives a method to investigate the invariant subrings of R(I) and G(I), and shows consequences. Assume that A is a Gorenstein local ring, the order of g is invertible in A, I is a parameter ideal, arid I has a generating system that each element is semi-invariant. Then, one can have a sufficient condition for the invariant subring R(I)^g and G(I)^g to be Gorenstein rings.
- 明治大学の論文
著者
-
中村 幸男
Department Of Mathematics School Of Science And Technology Meiji University
-
後藤 四郎
Department of Mathematics School of Science and Technology, Meiji University
-
居相 真一郎
Department of Mathematics School of Science and Technology, Meiji University
-
居相 真一郎
Department Of Mathematics School Of Science And Technology Meiji University
関連論文
- 有限群のRees代数への作用とその不変部分環のGorenstein性について(II)
- 随伴次数環の正準加群への埋め込み
- 有限群のRees代数への作用とその不変部分環のGorenstein性について
- イデアル化によって得られたArtin Gorenstein局所環内のgood idealsの構造と分布について