有限群のRees代数への作用とその不変部分環のGorenstein性について
スポンサーリンク
概要
- 論文の詳細を見る
Let G be a finite group of order N and assume that G acts on a Cohen-Macaulay local ring A as automorphisms of rings. Let N be a unit in A. For a given G-stable ideal I in A we denote by [numerical formula] and [numerical formula] the Rees algebra and the associated graded ring of I, respectively. Then G naturally acts on R(I) and [○!S](I) too. In this paper the conditions under which the invariant subrings R(I)^G of R(I) are Cohen-Macaulay and/or Gorenstein rings are described in connection with the corresponding ring-theoretic properties of [○!S](I)^G and the a-invariants a ([○!S](I)^G) of [○!S](I). Consequences and some applications are discussed.
- 明治大学の論文
著者
-
後藤 四郎
Department of Mathematics School of Science and Technology, Meiji University
-
居相 真一郎
Department Of Mathematics School Of Science And Technology Meiji University
-
居相 真一郎
Undergraduate school of Meiji University Major in Computer Science, Mathematics, Physics
関連論文
- 有限群のRees代数への作用とその不変部分環のGorenstein性について(II)
- 随伴次数環の正準加群への埋め込み
- 有限群のRees代数への作用とその不変部分環のGorenstein性について
- イデアル化によって得られたArtin Gorenstein局所環内のgood idealsの構造と分布について