Lp局所極限定理における振幅の詳細オーダー
スポンサーリンク
概要
- 論文の詳細を見る
This paper is concerned with the upper and lower bounds of Lp metrics Δ_<np>, 1≦p≦∞, constructed out of differences between density functions, for departure from normality for normed sums of independent and identically distributed random variables. It is shown that the Δ<np> are asymptotically equivalent in the strong sense that, for 1≦p, p'≦∞, Δ<np>'/Δ<np> is universally bounded away from zero and infinity as n→∞
- 中京大学の論文
- 1990-02-28
著者
関連論文
- 火葬炉数から見た阪神・淡路大震災
- 在庫問題について
- 巻頭言
- 巻頭言
- 金平糖の数理モデル
- 古典・文学にみる金平糖
- Lp局所極限定理における振幅の詳細オーダー
- ON NON-UNIFORM ESTIMATES OF ASYMPTOTIC EXPANSIONS IN THE CENTRAL LIMIT THEOREM
- Some L_p Versions for the Central Limit Theorem
- On the Rate of Convergence in the Central Limit Theorem (清水秀暢先生・川村正雄先生・前川知賢先生・杉山卓世先生退任記念特集号)
- ON THE RATE OF CONVERGENCE IN THE RANDOM-SUM CENTRAL LIMIT THEOREM
- CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM FOR THE SUMS OF A RANDOM NUMBER OF INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES
- 金平糖とその類似構造