Some L_p Versions for the Central Limit Theorem
スポンサーリンク
概要
- 論文の詳細を見る
Let F_n(x) denote the distribution of the normalized partial sum of independent random variables with finite second moment, and write Δ_n(x)=|F_n(x)-Φ(x)|, where Φ(x) is the standard nomal distribution. In this paper, some L_p versions of convergence rates in the central limit theorem are given, that is, under some conditions, we have 〓^^∞__<n=2> σ_n^2sn^<-2>‖〓_n(x)‖p<∞, where σ_n^2 is a variance of random variable and s_n^2 is a partial sum of variance.
- 中京大学の論文
- 1980-03-31
著者
関連論文
- 火葬炉数から見た阪神・淡路大震災
- 在庫問題について
- 巻頭言
- 巻頭言
- 金平糖の数理モデル
- 古典・文学にみる金平糖
- Lp局所極限定理における振幅の詳細オーダー
- ON NON-UNIFORM ESTIMATES OF ASYMPTOTIC EXPANSIONS IN THE CENTRAL LIMIT THEOREM
- Some L_p Versions for the Central Limit Theorem
- On the Rate of Convergence in the Central Limit Theorem (清水秀暢先生・川村正雄先生・前川知賢先生・杉山卓世先生退任記念特集号)
- ON THE RATE OF CONVERGENCE IN THE RANDOM-SUM CENTRAL LIMIT THEOREM
- CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM FOR THE SUMS OF A RANDOM NUMBER OF INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES
- 金平糖とその類似構造