Comparison of Electroluminescence and Photoluminescence Efficiencies of Organic Electroluminescent Devices Having a Bilayer Structure
スポンサーリンク
概要
- 論文の詳細を見る
The recombination processes of electrons and holes injected into the tris (8-hydroxyquinolino) aluminum (ALQ) layer of organic electroluminescent (EL) devices having the ALQ/diamine biller structure were studied. From the comparison of the EL and PL (photoluminescence) emissions, the quantum efficiency of EL under the normal operational conditions was estimated to be about 0.12 times that of PL. Experimental results suggested the occurrence of nonemissive electron-hole recombination processes at the ALQ/diamine interface.
- 社団法人応用物理学会の論文
- 1996-06-15
著者
-
Matsumura Michio
Research Center For Photoenergetics Of Organic Materials Osaka University
-
SAITO Masayuki
Research and Development Center, Toshiba Corporation
-
Akai Tomonori
Research Center For Photoenergetics Of Organic Materials Osaka University
-
Saito Masayuki
Research Center For Photoenergetics Of Organic Materials Osaka University
関連論文
- Electrochemical Method for Evaluation of Structural Perfection of Hydrogen-Terminated Si(111)Surface
- Formation of bulk-heterojunction structure in organic bilayer solar cells by heat treatment
- Photocarrier Generation in Organic Thin Film Solar Cells
- Efficient Reductive Alkylation of Aniline with Acetone over Pt Nanoparticles Encapsulated in Hollow Porous Carbon
- X-Ray Photoelectron Spectroscopy of Si-As-Te Chalcogenide Glasses Prepared in the Earth's Gravity and in Microgravity
- Design Study on RF Stage for Miniature PHS Terminal (Special Issue on Microwave Devices for Mobile Communications)
- Efficient Dihydroxylation of Naphthalene on Photoirradiated Rutile TiO_2 Powder in Solution Containing Hydrogen Peroxide
- Dihydroxylation of Naphthalene by Molecular Oxygen and Water Using TiO_2 Photocatalysts
- Direct Observation of Amphiphilic Silica Particles Assembled at an Oil-Water Interface
- Photocatalytic Activity of S-doped TiO_2 Photocatalyst under Visible Light
- Optical Properties and Crystallinity of ZnO Films for Application in Super-Resolution Optical Discs
- Red Electroluminescence from an Organic Europium Complex with a Triphenylphosphine Oxide Ligand
- Analysis of Current-Voltage Characteristics of Organic Electroluminescent Devices on the Basis of Schottky Emission Mechanism
- Organic Electroluminescent Devices Having Derivatives of Aluminum-Hydroxyquinoline Complex as Light Emitting Materials
- Comparison of Electroluminescence and Photoluminescence Efficiencies of Organic Electroluminescent Devices Having a Bilayer Structure
- Excitation Migration from Photoexcited Tris (8-hydroxy quinolino) aluminium to Quinacridone in Codeposited Thin Films
- Stereospecific Epoxidation of 2-Hexene with Molecular Oxygen on Photoirradiated Titanium Dioxide Powder
- Organic Electroluminescence Devices Based on Mixture of Aluminum–Hydroxyquinoline Complex and Compound with Low Dielectric Constant
- A Very Simple Method of Flattening Si(111) Surface at an Atomic Level Using Oxygen-Free Water
- Photocatalyzed Production of Hydrogen and Iodine from Aqueous Solutions of Iodide Using Platinum-Loaded TiO_2 Powder
- Properties of Organic Light-Emitting Devices with a Rubrene Sub-Monolayer Inserted between Electron- and Hole-Transport Layers
- Exciton Annihilation in ZnO Ultrafine Particles with Size of 10–40 nm
- Solid-State Dye-Sensitized Solar Cells Using Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] as a Hole-Transporting Material
- Photocurrents Generated under Forward Biases in Organic Thin-Film Solar Cells with Organic Heterojunction Structure
- CuOx Films as Anodes for Organic Light-Emitting Devices
- Electroluminescent Properties of OLEDs with a Rubrene Sub-Monolayer Inserted between Electron-and Hole-Transport Layers
- Efficient Electroluminescence from a Rubrene Sub-Monolayer Inserted between Electron- and Hole-Transport Layers