Structures and Stability of Lifted Combustion Zones in Preheated Oxidizer(Special Issue on International Conference on Power and Energy System)
スポンサーリンク
概要
- 論文の詳細を見る
The structures and stability of lifted combustion zones have been simulated with detailed chemistry and transport properties in an axisymmetric laminar fuel (CH_4) jet and outer co-flow of the (O_2+N_2) oxidizer whose initial temperature is 300 K, 700 K and 1 200 K. A set of numerical simulations was executed by increasing the N_2 dilution ratio, Z (mole fraction of N_2 in the oxidizer). The results showed that at 300 K, the lifted combustion zone had a triple flame structure where the rich premixed wing is smaller than the lean one and the trailing diffusion flame immediately inclined to the fuel side from the triple point as well as the leading edge of the triple flame was shifted away from the jet axis as Z increased. As the initial temperature increased, the combustion zones were lifted at larger Z values than the one at 300 K. Especially, for 1200 K, it was found that the lifted combustion zones, when expressed in terms of the heat release rate, have become so weak that a flameless triple combustion zone was formed due to the high dilution ratio and high preheat temperature. The numerical simulations on the response of the lifted triple combustion zone to the initial fuel velocity were also carried out, and the results showed that the lifted combustion zone using a high preheated temperature was very stable in the near field.
- 一般社団法人日本機械学会の論文
- 2002-08-15
著者
-
KOBAYASHI Hideaki
Institute of Fluid Science, Tohoku University
-
Niioka Takashi
Institute Of Fluid Science Tohoku University
-
Abuliti Abudula
Faculty Of Science And Technology Hirosaki University
-
Iika F
Faculty Of Science And Technology Hirosaki University
-
RUAN Jiongming
Faculty of Science and Technology, Hirosaki University
-
IIDA Fumio
Faculty of Science and Technology, Hirosaki University
-
Ruan Jiongming
Faculty Of Science And Technology Hirosaki University
-
Kobayashi Hideaki
Institute Of Fluid Science Tohoku University
関連論文
- Development of an Ethanol Reduced Kinetic Mechanism Based on the Quasi-Steady State Assumption and Feasibility Evaluation for Multi-Dimensional Flame Analysis
- Numerical Study of NO_x Emission in High Temperature Air Combustion
- Experimental Study on Spray Characteristics of Prefilming Airblast Atomizer
- Influence of Combustor Inlet Conditions on Combustot Exit Gas Peak Temperature Factor (Experiment by using the Combustor with Pressure Atomizing Fuel Nozzles and the Combustor with Airblast Type Fuel Injectors)
- Study on the Correlation of the Altitude Ignition Parameter and Lightoff Air Fuel Ratio for Jet Engine Combustors
- B104 IGNITION TIMES OF n-DECANE DROPLET ARRAY IN HIGH-TEMPERATURE LOW-SPEED AIRFLOW(Droplet/particle combustion-1)
- Effect of the Location of an Incident Shock Wave on Combustion and Flow Field of Wall Fuel-Injection
- Numerical Analysis of Combustion around a Strut in Supersonic Airflow
- Laminar Burning Velocity of Stoichiometric CH_4/air Premixed Flames at High-Pressure and High-Temperature
- A Study of Interaction between Shock Wave and Cross-Flow Jet Using Particle Tracking Velocimetry
- Effects of Turbulence on Flame Structure and NOx Emission of Turbulent Jet Non-Premixed Flames in High-Temperature Air Combustion(Advanced Fluid Information)
- TED-AJ03-375 A STUDY OF LAMINAR BURNING VELOCITY FOR H_2/O_2/He PREMIXED FLAME AT HIGH PRESSURE AND HIGH TEMPERATURE
- Asymptotic Analysis on the Extinction of Diffusion Flames in Supersonic Stagnation-Point Flow
- Experiments on Flame Spread of a Fuel Droplet Array in a High-Pressure Ambience
- Flame Stabilization Mechanism of a Newly Devised Strut for the Scramjet Engine
- TED-AJ03-608 EXTINCTION OF THE COUNTERFLOW DIFFUSION FLAME OF BLENDED FUELS
- TED-AJ03-616 Extinction Limits of Counterflow Diffusion Flames of CO, H_2,CH_4 and Their Blends
- Structures and Stability of Lifted Combustion Zones in Preheated Oxidizer(Special Issue on International Conference on Power and Energy System)
- TED-AJ03-400 Radiation Reabsorption Effects on NO Emission from High-Temperature Air/CH_4 Counterflow Diffusion Flames
- Numerical Simulation of Ignition in Supersonic Reactive Shear Layers
- TED-AJ03-520 THE NUMERICAL SIMULATION ON UNSTABLE BEHAVIORS OF PREMIXED FLAMES GENERATED BY HYDRODYNAMIC AND DIFFUSIVE-THERMAL EFFECTS
- Dynamic Behavior of Premixed Flames Propagating in Non-Uniform Velocity Fields : Assessment of Intrinsic Instability in Turbulent Combustion
- Numerical Analysis of Extremely-rich CH4/O2/H2O Premixed Flames at High Pressure and High Temperature Considering Production of Higher Hydrocarbons
- Numerical Study of Radiation Effects on Polypropylene Combustion Using High-temperature Oxidizer Diluted with H2O and CO2
- Numerical Study on the Intrinsic Instability of High-Temperature Premixed Flames under the Conditions of Constant Density and Constant Pressure in the Unburned Gas