Numerical Simulation of Ignition in Supersonic Reactive Shear Layers
スポンサーリンク
概要
- 論文の詳細を見る
This study is a direct numerical simulation of a spatially evolving reactive mixing layer of a hydrogen/air system. A second-order TVD scheme with full chemical mechanism was employed to observe the mixing and ignition process. Mixing efficiency and ignition location were investigated under different convection Mach numbers. Techniques for enhancing ignition are discussed, attention being given to the coupling of the shear layer growth rate and viscous dissipation. Results show that an increase of convective Mach number significantly decreases fuel-air mixing efficiency, but enhances the viscous dissipation. As a result, a decrease of shear layer thickness enhances the auto-ignition at high Mach numbers. It was also found that an increase of hydrogen velocity causes the shear layer to shift toward the air side, leading to a shorter ignition delay time. Furthermore, the effect of instability of the shear layer on ignition was also investigated. It was found that an improvement of ignition was-achieved by imposing a very small perturbation upstream.
- 一般社団法人日本機械学会の論文
- 1994-11-15
著者
-
Ju Yiguang
Institute Of Fluid Science Tohoku University
-
Niioka T
Tohoku Univ. Miyagi Jpn
-
Niioka Takashi
Institute Of Fluid Science Tohoku University
関連論文
- Numerical Study of NO_x Emission in High Temperature Air Combustion
- Experimental Study on Spray Characteristics of Prefilming Airblast Atomizer
- Influence of Combustor Inlet Conditions on Combustot Exit Gas Peak Temperature Factor (Experiment by using the Combustor with Pressure Atomizing Fuel Nozzles and the Combustor with Airblast Type Fuel Injectors)
- Study on the Correlation of the Altitude Ignition Parameter and Lightoff Air Fuel Ratio for Jet Engine Combustors
- B104 IGNITION TIMES OF n-DECANE DROPLET ARRAY IN HIGH-TEMPERATURE LOW-SPEED AIRFLOW(Droplet/particle combustion-1)
- Numerical Analysis of Combustion around a Strut in Supersonic Airflow
- Determination of Burning Velocity and Flammability Limit of Methane/Air Mixture Using Counterflow Flames
- Asymptotic Analysis on the Extinction of Diffusion Flames in Supersonic Stagnation-Point Flow
- Experiments on Flame Spread of a Fuel Droplet Array in a High-Pressure Ambience
- Flame Stabilization Mechanism of a Newly Devised Strut for the Scramjet Engine
- TED-AJ03-608 EXTINCTION OF THE COUNTERFLOW DIFFUSION FLAME OF BLENDED FUELS
- TED-AJ03-616 Extinction Limits of Counterflow Diffusion Flames of CO, H_2,CH_4 and Their Blends
- Structures and Stability of Lifted Combustion Zones in Preheated Oxidizer(Special Issue on International Conference on Power and Energy System)
- TED-AJ03-400 Radiation Reabsorption Effects on NO Emission from High-Temperature Air/CH_4 Counterflow Diffusion Flames
- Numerical Simulation of Ignition in Supersonic Reactive Shear Layers
- Numerical Study of Detonation Initiation by a Supersonic Sphere