Numerical Study on the Intrinsic Instability of High-Temperature Premixed Flames under the Conditions of Constant Density and Constant Pressure in the Unburned Gas
スポンサーリンク
概要
- 論文の詳細を見る
We studied numerically the intrinsic instability of high-temperature premixed flames, where the burned-gas temperature was constant, under the conditions of constant density and constant pressure in the unburned gas. A sinusoidal disturbance with sufficiently small amplitude was superimposed on a planar flame to obtain the relation between the growth rate and wave number, i.e. the dispersion relation. As the unburned-gas temperature became higher, the growth rate increased and the unstable range widened, which was due to the increase of the burning velocity of a planar flame. In sufficiently small wave-number range, the obtained numerical results were consistent with the theoretical solutions. When the growth rate and wave number were normalized, the same dispersion relations were found under the conditions both of constant density and constant pressure in the unburned gas. The normalized growth rate decreased with an increase of the unburned-gas temperature, and the normalized unstable range narrowed. This was because that the thermal-expansion effects became weaker owing to the decrease of the difference in temperature between the burned and unburned gases. To clarify the characteristics of cellular flames induced by intrinsic instability, we superimposed a disturbance with the critical wavelength. The superimposed disturbance evolved, and a cellular-shaped flame front formed. The behavior of cellular flames became milder as the unburned-gas temperature became higher, even though the growth rate increased. The burning velocity of a cellular flame normalized by that of a planar flame decreased, which was due to the weakness of the thermal-expansion effects and diffusive-thermal effects. Moreover, the burning velocity of a cellular flame increased monotonously as the length of computational domain became larger, and the dependence of burning velocity on domain length became weaker with an increase of the unburned-gas temperature.
- 一般社団法人 日本機械学会の論文
著者
-
OSHIMA Takuya
Department of Communications and Integrated Systems Tokyo Institute of Technology
-
Kadowaki Satoshi
Department Of Mechanical Engineering Nagaoka University Of Technology
-
Kobayashi Hideaki
Institute Of Fluid Science Tohoku University
関連論文
- Development of an Ethanol Reduced Kinetic Mechanism Based on the Quasi-Steady State Assumption and Feasibility Evaluation for Multi-Dimensional Flame Analysis
- B104 IGNITION TIMES OF n-DECANE DROPLET ARRAY IN HIGH-TEMPERATURE LOW-SPEED AIRFLOW(Droplet/particle combustion-1)
- Effect of the Location of an Incident Shock Wave on Combustion and Flow Field of Wall Fuel-Injection
- Laminar Burning Velocity of Stoichiometric CH_4/air Premixed Flames at High-Pressure and High-Temperature
- A Study of Interaction between Shock Wave and Cross-Flow Jet Using Particle Tracking Velocimetry
- Effects of Turbulence on Flame Structure and NOx Emission of Turbulent Jet Non-Premixed Flames in High-Temperature Air Combustion(Advanced Fluid Information)
- TED-AJ03-375 A STUDY OF LAMINAR BURNING VELOCITY FOR H_2/O_2/He PREMIXED FLAME AT HIGH PRESSURE AND HIGH TEMPERATURE
- On the three-dimensional orthogonal drawing of outerplanar graphs (extended abstract) (アルゴリズム)
- On the Three-Dimensional Orthogonal Drawing of Outerplanar Graphs : Extended Abstract
- On the Three-Dimensional Orthogonal Drawing of Outerplanar Graphs : Extended Abstract
- On the Three-Dimensional Orthogonal Drawing of Outerplanar Graphs : Extended Abstract
- Time Series Analysis on the Emission of Light from Methane-Air Lean Premixed Flames : Diagnostics of the Flame Instability
- Experiments on Flame Spread of a Fuel Droplet Array in a High-Pressure Ambience
- Flame Stabilization Mechanism of a Newly Devised Strut for the Scramjet Engine
- TED-AJ03-608 EXTINCTION OF THE COUNTERFLOW DIFFUSION FLAME OF BLENDED FUELS
- TED-AJ03-616 Extinction Limits of Counterflow Diffusion Flames of CO, H_2,CH_4 and Their Blends
- Structures and Stability of Lifted Combustion Zones in Preheated Oxidizer(Special Issue on International Conference on Power and Energy System)
- TED-AJ03-520 THE NUMERICAL SIMULATION ON UNSTABLE BEHAVIORS OF PREMIXED FLAMES GENERATED BY HYDRODYNAMIC AND DIFFUSIVE-THERMAL EFFECTS
- Formation of Cellular Flames and Increase in Flame Velocity Generated by Intrinsic Instability
- Numerical Study on Instability of Plane Flames
- Dynamic Behavior of Premixed Flames Propagating in Non-Uniform Velocity Fields : Assessment of Intrinsic Instability in Turbulent Combustion
- Numerical Analysis of Extremely-rich CH4/O2/H2O Premixed Flames at High Pressure and High Temperature Considering Production of Higher Hydrocarbons
- Numerical Study of Radiation Effects on Polypropylene Combustion Using High-temperature Oxidizer Diluted with H2O and CO2
- Basic investigation on estimation of land cover classification conforming to the ASJ RTN-Model using hyperspectral imaging data
- Time-domain outdoor acoustic simulation of a real-life area using land cover classification identified by airborne hyperspectral imagery
- Numerical Study on the Intrinsic Instability of High-Temperature Premixed Flames under the Conditions of Constant Density and Constant Pressure in the Unburned Gas