有色雑音を含むARシステムのパラメータ推定
スポンサーリンク
概要
- 論文の詳細を見る
In this report, a new method for the parameter estimation of AR systems corrupted by additive colored noise is proposed. The method is based on data prefiltering technique. Two prefilters (PFs) are used in the proposed method. The prefilters are chosen such that their output signals correspond to ARMA process in additive white noise. Then, it is shown that by using the modified Yule-Walker (MYW) equations, consistent estimates of the parameters of AR systems can be obtained in an iterative way. The relationship between input and output of a pth-order AR system can be expressed by the difference equation as x(n)=-Σ^^p__<i=1>a_ix(n - i) + u(n), (1) where the innovation process u(n) is a sequence of white noise with distribution N(0,σ^2_u)and x(n) denotes the output signal. The observed process y(n) is defined by y(n)=x(n)+e(n), (2) where observation noise e(n) is colored noise and is generally assumed to be an AR process: e(n)=(1/(D(z)))v(n) (3) and v(n) is an uncorrelated white noise process with distribution N(0,σ^2_u). In this paper, we consider that the input signal u(n), output signal x(n) and the observation noise e(n) are all not measurable directly. The problem under consideration is to estimate the parameters {a_i} using y(n) only.
- 社団法人電子情報通信学会の論文
- 1995-09-05
著者
-
Hasan Md.
Faculty Of Engineering Chiba University
-
谷萩 隆嗣
Faculty of Engineering, Chiba University
-
Mollah Md.
Faculty Of Engineering Chiba University
-
谷萩 隆嗣
Graduate School Of Science & Technology Chiba University
関連論文
- 非最小位相離散時間系の極零指定形セルフチューニング制御
- 並列アルゴリズムによるノイズパワーの推定 : 多チャネルARシステムの推定への応用
- パディ近似式を利用した非最小位相連続時間系のモデル規範形適応制御の一方法
- D-11-34 ニューラルネットワークで状態を選択したFSVQによる画像の圧縮
- 適応ニューロ・ファジィ推論システムの適用
- 有色雑音を含むARシステムのパラメータ推定
- 非最小位相系の適応制御の新しい方法
- 非最小位相連続時間系の極零指定形セルフチューニング制御の新しい方法