1変数複素有理反復法の収束範囲の形状について
スポンサーリンク
概要
- 論文の詳細を見る
Starting from the properties of invariant figures for a rational function of a complex variable, the global features of rational iterations treated by Julia, Fatou etc, are reviewed briefly, and some new theorems about the areas of convergence useful for their numerical tracing are derived. The domain of direct convergence in Julia's sense is a component of the largest open "minimal invariant figure", contained in the whole area of convergence whose limit is a stable or semistable fixed point. It is shown that, in most cases of practical importance, the domain itself is also minimal invariant and its boundary contains a minimal invariant figure on which unstable fixed points and their antecedents are arranged in a simple manner. The configuration of convergence areas can be traced with practically sufficient accuracy, by numerically calculating all fixed points and their several antecedents.
- 一般社団法人情報処理学会の論文
- 1978-08-15
著者
関連論文
- Halley法による複素数の累乗根の計算について
- 複素数の累乗根および逆数を求める反復法について
- 1変数複素有理反復法の収束範囲の形状について
- 代数方程式に対するNewton反復法とHalley反復法 (数値計算のアルゴリズムの研究)
- ゲシュタルトの分節としての協和音程
- 純音の周波数弁別限の理論式