Numerical Flow Analysis in a Cubic Cavity by the GSMAC Finite-Element Method : In the Case Where the Reynolds Numbers are 1000 and 3200
スポンサーリンク
概要
- 論文の詳細を見る
In previous simulations, the modified GSMAC method, which is more applicable to in-out flow problems, was proposed. In the present paper, however, this scheme is extended to three-dimensional analysis. As an example, flow in a cubic lid-driven cavity having many verified experimental and numerical results has been calculated at the Reynolds numbers of 1000 and 3200. Consequently, the velocity profiles are in good agreement with those of the pseudospectral method at Re=400 and 1000, and the TGL vortices, which give a three-dimensional effect, have been simulated.
- 一般社団法人日本機械学会の論文
- 1990-11-15
著者
-
Kato Y
Keio Univ. Yokohama Jpn
-
Kato Yasumasa
Faculty Of Science And Technology Keio University
-
Tanahashi Takahiko
Faculty Of Science And Technology Keio University
-
KAWAI Hideki
Engineering Research Laboratory, Kanegafuchi Chemical Industry Co.
-
Kawai Hideki
Engineering Research Laboratory Kanegafuchi Chemical Industry Co.
-
Tanahashi Takahiko
Faculty Of Engineering Keio University
関連論文
- Three-Dimensional Simulation of Silicon Melt Flow in Electromagnetic Czochralski Crystal Growth
- Finite-Element Method for Three-Dimensional Incompressible Viscous Flow Using Simultaneous Relaxation of Velocity and Bernoulli Function : Flow in a Lid-Driven Cubic Cavity at Re=5000
- GSMAC-FEM for Incompressible Viscous Flow Analysis : A Modified GSMAC Method
- FLOW OF THE ENTRANCE REGION IN A POROUS PIPE : 3RD REPORT : TRANSIENT FLOW
- Numerical Flow Analysis in a Cubic Cavity by the GSMAC Finite-Element Method : In the Case Where the Reynolds Numbers are 1000 and 3200
- A new System of Sensing Film Thickness by Use of Thermal Conduction : Series C : Vibration, Control Engineering, Engineering for Industry
- Theoretical Consideration on the Fundamental Behavior of Conducting Magnetic Fluids : Couette-like Flow
- Analysis of the Waterhammer with Water Column Separation
- Comparisons between Experimental and Theoretical Results of the Waterhammer with Water Column Separations
- Numerical Analysis of Natural Convection of Thermoelectrically Conducting Fluids in a Square Cavity under a Uniform Magnetic Field : Estimation of Induced Heating Term
- Numerical Analysis of Natural Convection of Thermo-Electrically Conducting Fluids in a Square Cavity under a Uniform Magnetic Field : Calculated Results, Frequency Characteristics
- New Hybrid-Streamline-Upwind Finite-Element Method in Dual Space : Fundamental Theory and Discrete Del Operator
- Fundamental Steady F1ow of Polar Fluids
- Entrance Flows of Electrically Conducting Fluids between Two Parallel Plates : Transient and Steady Flows
- GSMAC-A New Finite Element Method for Unsteady Incompressible Viscous Flow Problems : 2nd Report, Flow in a Square Cavity at High Reynolds Numbers : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties
- GSMAC-A New Finite Element Method for Unsteady Incompressible Viscous Flow Problems : 1st Report, A Stable Method at High Reynolds Numbers : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties
- A Numerical Method for Compressible Viscous Flow with a Multi Grid Algorithm
- Theoretical Study on Equation of Motion and Yield Stress of Electrorheological Fluid
- Fundamental Nonlinear Theory for Micropolar Electrically Conducting Fluids : Conservation Law, Nonequilibrium Thermodynamics, Peltier Effect
- Power Expended Theorem for Micropolar Conducting Magnetic Fluids
- New Hybrid-Streamline-Upwind Finite-Element Method for a Dual Space : Verification for Two-Dimensional Advection-Diffusion Equation
- Electromagnetic Interaction on Micropolar Fluids
- Micropolar Theory for Viscoelastic Magnetic Fluids
- Flow of the Entrance Region in a Porous Pipe : 2nd Report, Uniform Inlet Velocity Profile
- Thermodynamic Discussions for Constitutive Equations of Magnetic Fluids with Viscoelastic Effect : Polar Fluid Theory
- Determination of Constitutive Equations for Magnetic Fluids Using the Theory of Integrity Bases and the Principle of Maximal Dissipation Rate
- A NEW COMPLETE SET OF BASIC EQUATIONS FOR MAGNETIC FLUIDS WITH INTERNAL ROTATION : DERIVATION BY THERMODYNAMICAL METHOD
- Analysis of the Hydraulic Transient in a Pipe Equipped with an Air-chamber
- Thermodynamical Discussions on the Basic Equations of Conducting Magnetic Fluids : Nonrelativistic and Nonpolar Theory
- NEW CONSTITUTIVE EQUATIONS FOR CONDUCTING MAGNETIC FLUIDS WITH INTERNAL ROTATION : THERMODYNAMICAL DISCUSSIONS
- Distorted Pressure Histories due to the Step Responses in a Linear Tapered Pipe : 4th Report : Experimental Investigations