Thermodynamic Discussions for Constitutive Equations of Magnetic Fluids with Viscoelastic Effect : Polar Fluid Theory
スポンサーリンク
概要
著者
-
SHIZAWA Kazuyuki
Faculty of Science and Technology, Keio University
-
Tanahashi Takahiko
Faculty Of Engineering Keio University
-
Tanahashi Takahiko
Faculty Of Science Technology Keio University
-
Shizawa Kazuyuki
Faculty Of Science And Technology
-
Shizawa Kazuyuki
Faculty Of Science Technology Keio University
関連論文
- Three-Dimensional Simulation of Silicon Melt Flow in Electromagnetic Czochralski Crystal Growth
- Finite-Element Method for Three-Dimensional Incompressible Viscous Flow Using Simultaneous Relaxation of Velocity and Bernoulli Function : Flow in a Lid-Driven Cubic Cavity at Re=5000
- GSMAC-FEM for Incompressible Viscous Flow Analysis : A Modified GSMAC Method
- FLOW OF THE ENTRANCE REGION IN A POROUS PIPE : 3RD REPORT : TRANSIENT FLOW
- Numerical Flow Analysis in a Cubic Cavity by the GSMAC Finite-Element Method : In the Case Where the Reynolds Numbers are 1000 and 3200
- A new System of Sensing Film Thickness by Use of Thermal Conduction : Series C : Vibration, Control Engineering, Engineering for Industry
- Theoretical Consideration on the Fundamental Behavior of Conducting Magnetic Fluids : Couette-like Flow
- Analysis of the Waterhammer with Water Column Separation
- Comparisons between Experimental and Theoretical Results of the Waterhammer with Water Column Separations
- Numerical Analysis of Natural Convection of Thermoelectrically Conducting Fluids in a Square Cavity under a Uniform Magnetic Field : Estimation of Induced Heating Term
- Numerical Analysis of Natural Convection of Thermo-Electrically Conducting Fluids in a Square Cavity under a Uniform Magnetic Field : Calculated Results, Frequency Characteristics
- New Hybrid-Streamline-Upwind Finite-Element Method in Dual Space : Fundamental Theory and Discrete Del Operator
- Fundamental Steady F1ow of Polar Fluids
- Entrance Flows of Electrically Conducting Fluids between Two Parallel Plates : Transient and Steady Flows
- GSMAC-A New Finite Element Method for Unsteady Incompressible Viscous Flow Problems : 2nd Report, Flow in a Square Cavity at High Reynolds Numbers : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties
- GSMAC-A New Finite Element Method for Unsteady Incompressible Viscous Flow Problems : 1st Report, A Stable Method at High Reynolds Numbers : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties
- A Numerical Method for Compressible Viscous Flow with a Multi Grid Algorithm
- Theoretical Study on Equation of Motion and Yield Stress of Electrorheological Fluid
- Fundamental Nonlinear Theory for Micropolar Electrically Conducting Fluids : Conservation Law, Nonequilibrium Thermodynamics, Peltier Effect
- Power Expended Theorem for Micropolar Conducting Magnetic Fluids
- New Hybrid-Streamline-Upwind Finite-Element Method for a Dual Space : Verification for Two-Dimensional Advection-Diffusion Equation
- Electromagnetic Interaction on Micropolar Fluids
- Micropolar Theory for Viscoelastic Magnetic Fluids
- Flow of the Entrance Region in a Porous Pipe : 2nd Report, Uniform Inlet Velocity Profile
- Thermodynamic Discussions for Constitutive Equations of Magnetic Fluids with Viscoelastic Effect : Polar Fluid Theory
- Determination of Constitutive Equations for Magnetic Fluids Using the Theory of Integrity Bases and the Principle of Maximal Dissipation Rate
- A NEW COMPLETE SET OF BASIC EQUATIONS FOR MAGNETIC FLUIDS WITH INTERNAL ROTATION : DERIVATION BY THERMODYNAMICAL METHOD
- Analysis of the Hydraulic Transient in a Pipe Equipped with an Air-chamber
- Thermodynamical Discussions on the Basic Equations of Conducting Magnetic Fluids : Nonrelativistic and Nonpolar Theory
- NEW CONSTITUTIVE EQUATIONS FOR CONDUCTING MAGNETIC FLUIDS WITH INTERNAL ROTATION : THERMODYNAMICAL DISCUSSIONS
- Discussion of Thermomechanics on the Basis of Frame Invariance of Physical Law
- Distorted Pressure Histories due to the Step Responses in a Linear Tapered Pipe : 4th Report : Experimental Investigations