X線双計数管による応力分布の連続測定法について
スポンサーリンク
概要
- 論文の詳細を見る
twin-counter method different from the ordinary X-ray method of determination of residual stresses characterizes itself by the fact that the residual strains can be directly read out on the counting rate meter whose indication corresponds directly to a small shift in the position of an X-ray reflection line due to lattice strain. The twin-counter consists of two semi-cylindrical G.M. counters which are symmetrically situated on both sides of a thin separator which serves as the common cathode. A beam of reflected X-ray from a specimen may be divided into two by this fine common cathode, and each counting rate due to the two inner counters may be adjusted by shifting the Twin-counter so that the out put of the differential rate meter connected to each counter becomes zero. Then, an out put of the counting rate meter corresponds to the position of an X-ray reflected line. Some experimental methods and examples for determinations of the residual principal stress and its distributions on the specimen surface are demonstrated by making practical application of such a character of the Twin-counter method. According to the basic principle of the X-ray method of stress measurement, the surface stress component σ_ψ is given by the well known equation [numerical formula] Now ψ is kept at constant different from the ordinary "Sin^2ψ method", while ψ is changed as ψ_1,ψ_2,・・・・・・, ψ_i, etc. by rotating the specimen around the axis normal to the specimen surface. Then, the following equation is obtained by subtracting σ_<ψj> from σ_<ψi>, [numerical formula] In the value of (d_<,ip>-d_<ψj,p>) becomes maximum, the direction of principal stresses is the same as directions of ψ_i and ψ_j respectively. The angle in the direction of the principal stress, therefore, are found out from the experimental data with ease. If it can be estimated that one of the principal stressesσ_1 is a tension or compression and the other σ_2 is negligible small, σ_1 is determined using the equation given above. Since the incident angle ψ is kept at constant during the experiment, the focusing circle in a back-reflection focusing technique does not change, and it does not change the irradiated area nor the depth of the penetration of X-rays in the specimen. For other applications of this Twin-counter method, the relative surface stress distribution may be continuously recorded by shifting the specimen.
- 社団法人日本材料学会の論文
- 1964-12-15
著者
関連論文
- 加工変質層分科会報告
- 表面特性研究調査分科会報告
- 加工表面のはめあい性能の実態調査
- 加工表面のはめあい性能調査分科会報告
- 若手研究者に期待する(年頭所感)
- 会長就任にあたって
- 18-8オーステナイト銅の疲労過程中の転位挙動について
- 面心立方晶金属の高温疲労変形微視組織
- 18-8オーステナイト鋼の疲労き裂近傍の下部組織について
- 電子顕微鏡観察による純アルミニウムの高温疲労の研究
- 単一表面膜を有する試料への圧子押込み : 変形挙動と押込み深さの関係
- 加工硬化性材料のくさび押込み
- AlおよびCu単結晶の透過電子顕微鏡による引っかき加工層の観察 : 単粒引っかき加工に関する結晶学的研究(第2報)
- 銅単結晶における引っかき加工層の形成過程 : 単粒引っかき加工に関する結晶学的研究
- Al, Al-7%Mg 合金薄膜の疲労き裂先端近傍の転位組織
- 1-32 Al, Al-7%Mg 合金冷間圧延材の疲労き裂先端近傍の転位組織
- (1-9) 純鉄冷間圧延材の疲労強度異方性 II
- 圧延加工された低炭素鋼の疲労過程中の転移組織
- 1-23 低炭素鋼圧延材の疲労変形組織(圧延方向の影響)
- 焼なまし材および圧延材低炭素鋼の転位観察による疲労変形機構
- 1-16 アルミニウム薄膜の引張クラック近傍の透過電子顕微鏡観察
- キニー型真空ポンプの振動について
- 急冷した中実円筒鋼材のX線による残留応力測定
- 純Al薄膜の引張破壊過程の透過電子顕微鏡内直接観察
- (2-35) 純 Al の引張破壊部近傍の転位組織状態について
- 焼なましおよび表面圧延低炭素鋼の疲労き裂伝ぱ機構
- 焼なましおよび表面圧延低炭素鋼の疲労き裂伝ぱ挙動
- 18-8 オーステナイト鋼の疲労き裂発生過程の微視的観察
- 焼なましおよび表面圧延低炭素銅の疲労き裂発生機構
- X線双計数管による応力分布の連続測定法について
- レーザ・ドップラ流速計とその応用(液体工学)