Enhancement of the Upper Critical Field and a Field-Induced Superconductivity in Antiferromagnetic Conductors
スポンサーリンク
概要
- 論文の詳細を見る
We propose a mechanism by which the paramagnetic pair-breaking effect is largely reduced in superconductors with coexisting antiferromagnetic long-range and short-range orders. The mechanism is an extension of the Jaccarino and Peter mechanism to antiferromagnetic conductors, but the resultant phase diagram is quite different. In order to illustrate the mechanism, we examine a model which consists of mobile electrons and antiferromagnetically correlated localized spins with Kondo coupling between them. It is found that for weak Kondo coupling, the superconductivity occurs over an extraordinarily wide region of the magnetic field including zero field. The critical field exceeds the Chandrasekhar and Clogston limit, but there is no lower limit in contrast to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo coupling, both the low-field superconductivity and a field-induced super-conductivity occur. Possibilities in hybrid ruthenate cuprate superconductors and some organic superconductors are discussed.
- 社団法人日本物理学会の論文
- 2002-03-15
著者
-
Shimahara Hiroshi
Department Of Quantum Matter Science Adsm Hiroshima University
-
Shimahara Hiroshi
Department Of Quantum Matter Science Adsm
関連論文
- Fulde–Ferrell–Larkin–Ovchinnikov State in Heavy Fermion Superconductors
- Pseudogap due to Antiferromagnetic Fluctuations and the Phase Diagram of High-Temperature Oxide Superconductors : Condensed Matter: Electronic Properties etc.
- Magnetic Properties and Superconductivity of the Strong Coupling Hubbard Model
- Magnetic Properties of the Strong Coupling Hubbard Model
- Phase Transition without Spontaneous Symmetry Breaking between Hard and Soft Solid States(General)
- A Nonuniform State in a d-Wave Superconductor under Magnetic Field
- Order Parameter Mixing Effect in the Fulde-Ferrell State
- Fulde-Ferrell-Larkin-Ovchinnikov State and Field-Induced Superconductivity in an Organic Superconductor
- Enhancement of the Upper Critical Field and a Field-Induced Superconductivity in Antiferromagnetic Conductors
- Temperature Dependence of the Upper Critical Field of Anisotropic Singlet Superconductivity in a Square Lattice Tight-Binding Model in Parallel Magnetic Fields(Condensed Matter : Electronic Structure, Electrical, Mgagnetic and Optical Properties)
- Reduction of Pauli Paramagnetic Pair-breaking Effect in Antiferromagnetic Superconductors(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Coexistence of Singlet and Triplet Attractive Channels in the Pairing Interactions Mediated by Antiferromagnetic Fluctuations : Condensed Matter: Electronic Properties, etc.
- Magnon Exchange Mechanism of Superconductivity in a Generalized Kondo Lattice Model
- Enhancement of the Upper Critical Field Due to a Fermi-Surface Effect in Quasi-Two-Dimensional Superconductors in Parallel Magnetic Fields
- Structure of the Fulde-Ferrell-Larkin-Ovchinnikov State in Two-Dimensional Superconductors
- Isotope Effect in Superconductors with Coexisting Interactions of Phonon and Nonphonon Mechanisms
- Internal Transition of Superconducting State by Impurity Doping with a Jump of Isotope-effect Coefficient in Multiband Superconductors
- Internal Transition of Superconducting State by Impurity Doping with a Jump of Isotope-effect Coefficient in Multiband Superconductors
- Isotope Effect in Superconductors with Coexisting Interactions of Phonon and Nonphonon Mechanisms
- Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems(Condensed matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems(Condensed matter : Electronic Structure, Electrical, Magnetic and Optical Properties)