Phase Transition without Spontaneous Symmetry Breaking between Hard and Soft Solid States(General)
スポンサーリンク
概要
- 論文の詳細を見る
The possibility of a new first-order phase transition between solid states with different stiffnesses but the same crystal symmetry is shown. The transition is not accompanied by spontaneous symmetry breaking, analogously to the liquid-gas transition. However, it is different from the liquid-gas transition in the aspect that it occurs between ordered phases. An ionic crystal that has two possible states with different ionic charges and close cohesive energies is a candidate in which such a transition is realized. We propose a simple model to describe such a transition, and examine the thermodynamic property in one, two and three dimensions. Expressions of the transition temperatures, the specific heats, and the latent heats are derived for a limiting case. We briefly discuss the possible relevance of the present mechanism of the phase transition to that observed in a biferrocene-fluorotetracyanoquinodimethane (F_1TCNQ) complex.
- 社団法人日本物理学会の論文
- 2005-03-15
著者
関連論文
- Fulde–Ferrell–Larkin–Ovchinnikov State in Heavy Fermion Superconductors
- Pseudogap due to Antiferromagnetic Fluctuations and the Phase Diagram of High-Temperature Oxide Superconductors : Condensed Matter: Electronic Properties etc.
- Magnetic Properties and Superconductivity of the Strong Coupling Hubbard Model
- Magnetic Properties of the Strong Coupling Hubbard Model
- Phase Transition without Spontaneous Symmetry Breaking between Hard and Soft Solid States(General)
- A Nonuniform State in a d-Wave Superconductor under Magnetic Field
- Order Parameter Mixing Effect in the Fulde-Ferrell State
- Fulde-Ferrell-Larkin-Ovchinnikov State and Field-Induced Superconductivity in an Organic Superconductor
- Enhancement of the Upper Critical Field and a Field-Induced Superconductivity in Antiferromagnetic Conductors
- Temperature Dependence of the Upper Critical Field of Anisotropic Singlet Superconductivity in a Square Lattice Tight-Binding Model in Parallel Magnetic Fields(Condensed Matter : Electronic Structure, Electrical, Mgagnetic and Optical Properties)
- Reduction of Pauli Paramagnetic Pair-breaking Effect in Antiferromagnetic Superconductors(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Coexistence of Singlet and Triplet Attractive Channels in the Pairing Interactions Mediated by Antiferromagnetic Fluctuations : Condensed Matter: Electronic Properties, etc.
- Magnon Exchange Mechanism of Superconductivity in a Generalized Kondo Lattice Model
- Enhancement of the Upper Critical Field Due to a Fermi-Surface Effect in Quasi-Two-Dimensional Superconductors in Parallel Magnetic Fields
- Structure of the Fulde-Ferrell-Larkin-Ovchinnikov State in Two-Dimensional Superconductors
- Isotope Effect in Superconductors with Coexisting Interactions of Phonon and Nonphonon Mechanisms
- Internal Transition of Superconducting State by Impurity Doping with a Jump of Isotope-effect Coefficient in Multiband Superconductors
- Internal Transition of Superconducting State by Impurity Doping with a Jump of Isotope-effect Coefficient in Multiband Superconductors
- Isotope Effect in Superconductors with Coexisting Interactions of Phonon and Nonphonon Mechanisms
- Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems(Condensed matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems(Condensed matter : Electronic Structure, Electrical, Magnetic and Optical Properties)