Explicit Solutions of Nonlinear Equations with Density Dependent Diffusion
スポンサーリンク
概要
- 論文の詳細を見る
Explicit solutions are obtained for several nonlinear equations with density depen-dent diffusion by employing the Painlev8 analysis. Included are equilibrium solulions, travelling wave solutions and other time-dependent solutions. Properties ofthese solutions are also briefly discussed.
- 社団法人日本物理学会の論文
- 1987-06-15
著者
-
Satsuma Junkichi
Department Of Applied Physics Faculty Of Engineering University Of Tokyo
-
Satsuma Junkichi
Department Of Applied Mathematics And Physics Faculty Of Engineering Kyoto University
-
Satsuma Junkichi
Department of Applied Physics,Faculty of Engineering,University of Tokyo
関連論文
- An Elementary Introduction to Sato Theory
- 線形化可能写像の初期値空間 (可積分系研究の新展開 : 連続・離散・超離散)
- 7p-YB-7 超離散戸田分子方程式
- Solutions of the Broer-Kaup System through Its Trilinear Form
- Modulated Langmuir Waves and Nonlinear Landau Damping
- On oscillatory solutions in ultradiscrete system (Expansion of Integrable Systems)
- On oscillatory solutions of the ultradiscrete Sine-Gordon equation
- Interaction of Ion-Acoustic Solitons in Three-Dimensional Space
- Shallow Water Waves Propagating along Undulation of Bottom Surface
- 超離散ソリトン方程式とその解 (可積分系数理の展望と応用)
- Properties of the Magma and Modified Magma Equations
- 27p-W-7 セルオートマトンと拡散方程式
- 27p-W-6 セルオートマトンと微分方程式
- Soliton Solutions of the Mel'nikov Equations
- A Representation fo Solutions for the KP Hierarchy and Its Algebraic Structure
- セルオートマトンの背後にひそむ物理 : 超離散系の観点から
- セルオートマトンの背後にひそむ物理 : 超離散系の観点から
- On a nature of a soliton cellular automaton (Recent Topics on Discrete Integrable Systems)
- 超離散化 : セルオートマトンと微分方程式をつなぐ
- 28a-W-11 Thermal overdamped Sine-Gordon方程式系のStochastic Energetics
- 27p-W-5 箱と玉の系の解について
- Wronskian Structures of Solutions for Soliton Equations
- Solutios of the Kadomtsev-Petviashvili Equation and the Two-Dimensional Toda Equations
- 座談会 戸田格子40年の軌跡 (特集 戸田格子40年)
- B Initial Value Problems of One-Dimensional self-Modulation of Nonlinear Waves in Dispersive Media (Part V. Initial Value Problems)
- Soliton Solutions in a Diatomic Lattice System
- New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrodinger Equation
- 教育問題と学会
- 差分の世界(最終回)超離散
- 超離散とは (特集 超離散--進展する数理モデルのデジタル化)
- 差分の世界(4)非線型差分方程式(その1)
- 差分の世界(3)
- 差分の世界(2)
- 差分の世界(1)コンピュ-タと解析学
- N-Soliton Solution of the K-bV Equation with Loss and Nonuniformity Terms
- Chopping Phenomenon of a Nonlinear System
- A Soliton Cellular Automaton
- q-Difference Version of the Two-Dimensional Toda Lattice Equation
- Exact Solutions of a Nonlinear Diffusion Equation
- A New-Type of Soliton Behavior in a Two Dimensional Plasma System
- An N-Soliton Solution for the Nonlinear Schrodinger Equation Coupled to the Boussinesq Equation
- Multi-Soliton Solutions of a Coupled System of the Nonlinear Schrodinger Equation and the Maxwell-Bloch Equations
- N-Soliton Solutions of Nonlinear Network Equations Describing a Volterra System
- A Variety of Nonlinear Network Equations Generated from the Backlund Transformation for the Toda Lattice
- Explicit Solutions of Nonlinear Equations with Density Dependent Diffusion
- Higher Conservation Laws for the Korteweg-de Vries Equation through Backlund Transformation
- Nonlinear Evolution Equations Generated from the Backlund Transformation for the Toda Lattice
- Nonlinear Evolution Equations Generated from the Backlund Transformation for the Boussinesq Equation
- Bilinearization of a Generalized Derivative Nonlinear Schrodinger Equation
- Finite Amplitude Ion Acoustic Waves in a Plasmon Gas
- The Lotka-Volterra Equations and the QR Algorithm
- Integrable Four-Dimensional Nonlinear Lattice Expressed by Trilinear Form
- Periodic Wave and Rational Soliton Solutions of the Benjamin-Ono Equation
- A Backlund Transformation for a Higher Order Korteweg-De Vries Equation
- N-Soliton Solutions of Model Equations for Shallow Water Waves
- Higher Conservation Laws for the Nonlinear Schrodinger Equation through Backlund Transformation
- 超離散化における負の問題の解決(サーベイ,応用可積分系研究会)
- N-Soliton Solution of the Two- Dimensional Korteweg-de Vries Equation