A Model on the Flow-Stress Change of Pure Lead at the Superconducting-Normal Transition
スポンサーリンク
概要
- 論文の詳細を見る
Variation of flow stress in pure lead at the superconducting-normal (S-N) transition is analysed on the same model as used in a theory of work hardening proposed by the present author. In this model deformation proceeds by successive activations of discontinuous slips and each unit slip produces a finite elongation in the specimen during its life time. The change in the drag coefficient for dislocations at the S-N transition changes the number of discontinuous slips to be activated in the specimen; this change in the number of slips is similar to the case of a strain-rate change. It is concluded that the plastic response of pure lead at the S-N transition is essentially the same as that at a strain-rate change.
- 社団法人日本物理学会の論文
- 1974-12-15
著者
関連論文
- Work-Hardening of Iron Single Crystals between 25℃ and 900℃
- Work-Hardening of Iron Single Crystals under Cyclic Changes of Strain Rate
- Tensile Deformation of Iron Single Crystals Having the [100] and [110] Axes between -70℃ and 250℃
- The Condition for the Appearance of Necking under Tensile Tests
- Orientation Dependence of Work-Hardening in Iron Single Crystals
- A Specimen Stage for Low Temperature Tensile Deformation in an Electron Microscope
- Magnetic Properties of Plastically Deformed Iron Single Crystals
- Nucleation and Growth of Stress Relief Patterns in Sputtered Molybdenum Films
- Stress Distribution around a Crack Tip in Non-Hardening Materials under Plane Strain
- A Model on the Flow-Stress Change of Pure Lead at the Superconducting-Normal Transition
- Stress and Delay Time for the Appearance of Twinning Deformation in Iron Single Crystals
- Load-Elongation Curves of Pure Body-Centred Cubic Metals at Low Temperatures
- Low Temperature Creeps and Delay Times in Iron of Very Low Carbon Content
- Motion of a Screw Dislocation under Uniform Applied Stress
- Variation of Flow Stress of Copper Single Crystals after Changes in Strain Rate
- Temperature Dependence of Work-hardening Rate in Iron Single Crystals
- Orientation Dependence of Work Hardening of Copper Single Crystals near the [001] Axis
- Twinning Stress in Pre-Strained Iron Single Crystals
- Theory of Hight-Temperature Type Work-Hardening of Body-Centred Cubic Metals
- Theory of Low Temperature Work-Hardening of Body-Centred Cubic Metals
- Work Hardening of Cu-10 at %Al Alloy Single Crystals at High Temperatures
- Glide Band Structures in Iron Single Crystals
- Orientation Dependence of Work Herdening of Copper Single Crystals near the [111] Axis
- Dynamic Propagation of Deformation Twins in Iron Single Crystals
- Velocity of Slowly Moving Dislocation
- Load-Elongation Curves and Creep Curves of Pure Single Crystals
- Two-dimensional Stress Distribution in a Compact Tension Specimen : Elastic Solution
- Condition for Crack Growth in High-Strength Ductile Materials
- Yield Points of Single Crystals of Iron and Comparison with Polycrystal
- Yield Points and Transient Creeps in Polycrystalline Iron of Very Low Carbon Content
- Activation Energy of Bordoni Peak and its Relation to Peierls Stress