Soliton-Like Solutions for a Dispersive Nonlinear Wave Equation
スポンサーリンク
概要
- 論文の詳細を見る
A dispersive nonlinear wave equation of modified Korteweg-de Vries type is studied. Three independent nonpolynomial conservation laws are explicitly written. Solitary wave solutions preserving their identity after interaction are found by means of numerical computations. A relation between the speed of any wave and its amplitude is determined analytically. The conjecture that systems which are not completely integrable can admit soliton-like solutions is discussed.
- 理論物理学刊行会の論文
- 1978-07-25
著者
-
Leo Rosario
Istitute Di Fisica Dell'universita Di Lecce
-
Leo Mario
Istitute Di Fisica Dell'universita Di Lecce
-
SOLIANI Giulio
Istitute di Fisica dell'Universita di Lecce
-
Soliani Giulio
Istitute Di Fisica Dell'universita Di Lecce
-
LEO Mario
Istituto di Fisica dell'Universita di Lecce
-
Leo Antonio
Istituto di Fisica dell'Universita di Lecce
-
SOLIANI Giulio
Istituto di Fisica dell'Universita di Lecce
-
LEO Rosario
Istituto di Fisica dell'Universita di Lecce
関連論文
- Analysis of a Modified Korteweg-de Vries Equation
- Soliton-Like Solutions for a Dispersive Nonlinear Wave Equation
- Noether Invariants and Complete Lie-Point Symmetries for Equations of the Hill Type : Particles and Fields
- On the Relation between Lie Symmetries and Prolongation Structures of Nonlinear Field Equations : Non-Local Symmetries
- On Certain Symmetry Reduction Systems of the Three-Wave Resonant Interaction in (2+1) Dimensions : General and Mathematical Physics