On Certain Symmetry Reduction Systems of the Three-Wave Resonant Interaction in (2+1) Dimensions : General and Mathematical Physics
スポンサーリンク
概要
- 論文の詳細を見る
We study three systems of nonlinear differential equations obtained from the symmetry reduction of that three-wave resonant interaction (2D-3WR) in (2+1) dimensions. We show that two of such systems are reducible to Painleve III and Painleve VI equations, respectively, while for the third system a spectral problem is found via a prolongation technique. New solutions of the 2D-3WR equations can be determined through the relationships existing between the reduction variables and the original three-wave resonant fields.
- 理論物理学刊行会の論文
- 1986-10-25
著者
-
Soliani Giulio
Istitute Di Fisica Dell'universita Di Lecce
-
Martina L
Infn- Gruppo Di Lecce-sezione Di Bari
-
LEO R.A.
INFN- Gruppo di Lecce-Sezione di Bari
-
SOLIANI G.
INFN- Gruppo di Lecce-Sezione di Bari
-
TONDO G.
Corso di Dottorato in Matematica, Metodi e Applicazioni Politecnico di Torino
-
Tondo G.
Corso Di Dottorato In Matematica Metodi E Applicazioni Politecnico Di Torino
-
SOLIANI Giulio
Istituto di Fisica dell'Universita di Lecce
関連論文
- Analysis of a Modified Korteweg-de Vries Equation
- Soliton-Like Solutions for a Dispersive Nonlinear Wave Equation
- Noether Invariants and Complete Lie-Point Symmetries for Equations of the Hill Type : Particles and Fields
- On the Relation between Lie Symmetries and Prolongation Structures of Nonlinear Field Equations : Non-Local Symmetries
- On Certain Symmetry Reduction Systems of the Three-Wave Resonant Interaction in (2+1) Dimensions : General and Mathematical Physics