Nonlinear Transformations among Differential-Difference Equations That Exhibit Solitons
スポンサーリンク
概要
- 論文の詳細を見る
- 理論物理学刊行会の論文
- 1975-07-25
著者
-
Hirota Ryogo
Department Of Applied Mathematics Faculty Of Engineering Hiroshima University
-
Hirota Ryogo
Department Of Mathematics And Physics Ritsumeikan University
関連論文
- New Aspects of the Bilinear Equations (Integrable systems and their applications)
- 超離散ソリトン方程式のパーマネント形式の解について (可積分数理の新潮流)
- 超離散代数方程式の解 (可積分系数理の展望と応用)
- Tzitzeica方程式と戸田分子方程式の境界値問題 (可積分系理論とその周辺 : 課題と展望を探る)
- New aspects of the bilinear equations (可積分系数理とその応用--RIMS研究集会報告集)
- Conserved Quantities of a Class of Nonlinear Difference-Difference Equations
- Ultradiscrete KdV Equation
- Casorati and Discrete Gram Type Determinant Representations of Solutions to the Discrete KP Hierarchy
- Note on "New Coupled Integrable Dispersionless Equations"
- Pfaffian Representation of Solutions to the Discrete BKP Hierarchy in Bilinear Form
- 19pRJ-4 The Scarch of the integrable difference Equations of third order, II
- 28pZD-2 The Search of the integrable difference Equations of third order, I
- 微分方程式の"理想的"差分化 : 離散可積分系の研究の進展 (離散可積分系の研究の進展 : 超離散化・量子化)
- Discretization of the Lagrange Top : General Physics
- 離散2D 戸田方程式, Lax pair, 保存量, 非自励系(ソリトン理論から可積分数理へ:"de nouvelles perspectives ")
- 行列式とパフィアン(4)
- 行列式とパフィアン(4)
- 行列式とパフィアン(3)
- 行列式とパフィアン(2)
- 行列式とパフィアン(1)
- Ultradiscrete Soliton Solution of Permanent Type(General)
- 超離散KP方程式,超離散BKP方程式のBacklund変換方程式(可積分系研究の新展開 : 連続・離散・超離散)
- 一般的双線型方程式のBacklund変換方程式 (可積分系研究における双線形化法とその周辺)
- Determinants and Pfaffians : How to obtain N-soliton solutions from 2-soliton solutions (New Developments in the Research of Integrable Systems : Continuous, Discrete, Ultra-discrete)
- 差分学の世紀 (特集 差分学の世紀--デジタル世界の未来と可能性)
- 19pRJ-6 K-dV・Sawada-Kotera方程式の差分スキーム
- Two-Dimensional Toda Lattice Equations
- Soliton Solutions of the Mel'nikov Equations
- Discretization of the Euler Top : General Physics
- Discretization of the Potential Modified KdV Equation
- Ultradiscretization of Coupled Soliton Equations through the Miura Transformation (Diversity of the Theory of Integrable Systems)
- Wronskian Structures of Solutions for Soliton Equations
- Solutios of the Kadomtsev-Petviashvili Equation and the Two-Dimensional Toda Equations
- Second Modified KdV Equation and Its Exact Multi-Soliton Solution
- A Discrete KdV Equation and Its Casorati Determinant Solution
- Exact Solutions of the Cylindrical Toda Molecule Equation
- The Backlund and Inverse Scattering Transform of the K-dV Equation with Nonuniformities
- Solutions of the Classical Boussinesq Equation and the Spherical Boussinesq Equation:The Wronskian Technique
- Bilinearization of Soliton Equations
- A New Example of Explode-Decay Solitary Waves in One-Dimension
- "Molecule Solutions"of Coupled Modefied KdV Equations
- Classical Boussinesq Equation is a Reduction of the Modified KP Equation
- Soliton Solutions of a Coupled Derivative Modified KdV Equations : General Physics
- A Coupled KdV Equation is One Case of the Four-Reduction of the KP Hierarchy
- Resonance of Solitons in One Dimension
- N-Soliton Solution of the K-bV Equation with Loss and Nonuniformity Terms
- Chopping Phenomenon of a Nonlinear System
- Exact Solution to 2N-Wave Interaction
- N-Soliton Solutions of Nonlinear Network Equations Describing a Volterra System
- An Exact Solution to "Simple Harmonic Generation"
- Nonlinear Partial Difference Equations.IV.Backlund Transformation for the Discrete-Time Toda Equation
- A Variety of Nonlinear Network Equations Generated from the Backlund Transformation for the Toda Lattice
- Nonlinear Evolution Equations Generated from the Backlund Transformation for the Toda Lattice
- Nonlinear Evolution Equations Generated from the Backlund Transformation for the Boussinesq Equation
- Hierarchies of Coupled Soliton Equations. I
- Discrete Analogue of a Generalized Toda Equation
- A Direct Approach to Multi-Periodic Wave Solutions to Nonlinear Evolution Equations
- A Functional Integral Representation of the Soliton Solution
- Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation
- Discrete Two-Dimensional Toda Molecule Equation
- Nonlinear Transformations among Differential-Difference Equations That Exhibit Solitons
- N-Soliton Solutions of Model Equations for Shallow Water Waves
- Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations
- Soliton Solutions to the BKP Equations.II.The Integral Equation
- Soliton Solutions to the BKP Equations.I.the Pfaffian technique