An analogue of Mordell conjecture over function fields
スポンサーリンク
概要
- 論文の詳細を見る
Let f : X→C be a proper surjective morphism from a non-singular projective variety onto a non-singular curve defined over the complex number field. Let P(Ω_x^<⊗d>) be a projective bundle over X with d=dim X. Assume that the fundamental sheaf Ο(1) on P(Ω_x^<⊗d>) is C-ample and that sections C_λ of f are Zariski dense in X. Then we prove that var f=0. This is a special case of higher dimensional Mordell conjecture over the function field.
- 東京工芸大学の論文
- 1987-01-15
著者
関連論文
- An analogue of Mordell conjecture over function fields
- An analogue Mordell-Noguchi conjecture over function fields-bis
- Pluri-canonical system of varieties of general type
- IITAKA-VIEHWEG CONJECTURE