簡単な双曲型偏微分方程式の特有初期値問題 : 古典的解法と関数解析(その3)
スポンサーリンク
概要
- 論文の詳細を見る
First of all, I showed the proof of the uniguness and the existence of solution on the characteristic initial value problem of the hyperbolic partial differential equation in this paper, one was of classical solution, and the other was of weak solution of the functional analysis. Applying these analyses to the wave equation. I gave six considerations about the long wave, sound wave and so on, two ones among these were the method of plane wave and characteristics. In the functional analyis, these wave eguations were transformed into the evolution eguations with the semi group theory, I showed the uniguness and the existence of solution with this theory. I think the functional analysis is very important to solve not only the hyperbolic partial differential equations but also the parabolic ones.
- 1999-07-31
著者
関連論文
- 帰納的関数を用いた数値計算の基礎的理論 : 代数系の構造と計算可能性
- 非線形作用素方程式の定常一境界値問題 : 非線形関数解析(その1)
- 簡単な双曲型偏微分方程式の特有初期値問題 : 古典的解法と関数解析(その3)
- 制御に関する一考察 : 変分原理と最適化問題
- 地域分析と数値シミュレーション : 地域メッシュによる解析
- 確率微分方程式による流体粒子の挙動 : (測度論的)確率論と数値解析
- 自励系の安定性理論 : ベクトル場の流れと自励系常微分方程式
- 簡単な放物型偏微分方程式の特有初期値問題 : 古典的解法と関数解析(その2)
- 簡単な楕円形偏微分方程式のディリクレ問題 : 古典的解法と関数解析(その1)
- Lie微分による流れ場の支配方程式 : 数値計算のための自然標構表現(微分幾何学)
- 直交射影行列を用いた多変量解析 : データ解析の数学的理論
- 本学のデータ解析の教授法 : 加重型回帰分析法とその結果