Uniform two-weight norm inequalities for Hankel transform Bochner-Riesz means of order one
スポンサーリンク
概要
- 論文の詳細を見る
Two-weight $L^p$ norm inequalities, uniform with respect to the order of the involved Bessel function, are proved for the Bochner-Riesz means of the first order for the Hankel transform. Both sufficient and necessary conditions for parameters used in the two weights are determined. The proof relies on uniform pointwise asymptotic estimates for the Bessel functions that were shown by Barcelo and Cordoba.
- 東北大学の論文
著者
-
Stempak Krzysztof
Instytut Matematyki Politechnika Wroclawska
-
Stempak Krzysztof
Instytut Matematyczny Politechnikiwroclawskiej
-
Ciaurri Oscar
Departamento de Matematicas y Computacion, Universidad de La Rioja
-
Varona Juan
Departamento de Matematicas y Computacion, Universidad de La Rioja
-
Varona Juan
Departamento De Matematicas Y Computacion Universidad De La Rioja
-
Ciaurri Oscar
Departamento De Matematicas Y Computacion Universidad De La Rioja
関連論文
- Relating multipliers and transplantation for Fourier-Bessel expansionsand Hankel transform
- Weighted estimates for the Hankel transform transplantation operator
- Uniform two-weight norm inequalities for Hankel transform Bochner-Riesz means of order one