Relating multipliers and transplantation for Fourier-Bessel expansionsand Hankel transform
スポンサーリンク
概要
- 論文の詳細を見る
Proved are transference results that show connections between: a) multipliers for the Fourier-Bessel series and multipliers for the Hankel transform; b) maximal operators defined by Fourier-Bessel multipliers and maximal operators given by Hankel transform multipliers; c) Fourier-Bessel transplantation and Hankel transform transplantation. In some way the connections described in a) and b) can be seen as multi-dimensional extensions of the classical results of Igari, and Kenig and Tomas for the one dimensional Fourier transform. We prove our results for the non-modified Hankel transform in the power weight setting, and this allows to translate them also to the context of the modified Hankel transform. Together with Gilbert's transplantation theorem, our transference shows that harmonic analysis results for the Hankel transform of arbitrary order are consequences of corresponding results for the cosine expansions.
- 東北大学の論文
著者
-
Betancor Jorge
Departamento de Analisis Matematico, Universidad de la Laguna
-
Betancor Jorge
Departamento De Analisis Matematico Universidad De La Laguna
-
Betancor Jorge
Departamento De Analisis Matematico Universidad De Lalaguna
-
Stempak Krzysztof
Instytut Matematyczny, PolitechnikiWroclawskiej
-
Stempak Krzysztof
Instytut Matematyczny Politechnikiwroclawskiej
関連論文
- Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions
- Arcuate line of the rectus sheath : Clinical approach
- Relating multipliers and transplantation for Fourier-Bessel expansionsand Hankel transform
- On the Besov-Hankel spaces
- On Hankel transformation, convolution operators and multipliers on Hardy type spaces
- Weighted estimates for the Hankel transform transplantation operator
- Uniform two-weight norm inequalities for Hankel transform Bochner-Riesz means of order one