C級関数!(x)に対する非線形方程式f(x)=0の近似解の収束性について(基礎教育センター)(自然科学教室)
スポンサーリンク
概要
- 論文の詳細を見る
As the methods of finding the approximate solutions of non-1inear equation f (x) = O, the Newton and the secant methods are well known and are recently recognized again because they are fairly applicable to computer calculation. In these iterative procedures, the curve y = f (x) is approximated by the straight lines and hence the recurrence formulas are relatively simple and the successive calculations are not so difficult. But, in general, the convergence of approximate sequence {x_n} is not necessarily assured. Indeed, in many cases, the sequence {x_n} does not approach to a true solution. For giving the assurrance of the convergence of {x_n} we must determine the suitable extent of starting point x_0. The typical proof of the convergence of {x_n} is done with the help of the so-called principle of contraction mapping under the additional condition that f (x) is in the class C^2 The purpose of this paper is to prove the convergence of {x_n} when f(x) is in C^1 but not necessarily in C^2 And further, the author should like to remark that his method does not ask the help of the principle of contraction mapping and that his new proof is applicable to the case of the more complicated secant method whose approximate sequence is determined by recursion formula of three poins.
- 2002-03-31
著者
-
樋口 功
愛知工業大学基礁教育センター・白熱科学教室
-
樋口 功
Science Division, Center of General Education, Aichi Institute of Technology
関連論文
- 関数核の正則性とポテンシァルの無限遠点の近傍での挙動について
- C級関数!(x)に対する非線形方程式f(x)=0の近似解の収束性について(基礎教育センター)(自然科学教室)
- 誤差の評価から逆算した閉型積分近似公式について
- 連続関数の平均値の近似公式とその誤差について(基礎教育センター)(自然科学教室)
- 被積分関数の滑らかさによる数値積分公式の誤差の評価について
- オイラー法による微分方程式の近似解の誤差評価について
- Newton法による近似解列の収束性とその初等的な新証明(基礎教育センター)(自然科学教室)
- 直線近似による数値積分公式とその誤差評価(基礎教育センター)(自然科学教室)
- 積分の平均値の定理の拡張(基礎教育センター)(自然科学教室)
- Rcgula-Falsi法による近似解の収束性について(基礎教育センター)(自然科学教室)
- 二分法と割線法の併用による方程式の近似解法について(基礎教育センター)(自然科学教室)
- ランダムデータに基づく数値積分とその最良形について(基礎教育センター)(自然科学教室)
- 連続関数の平均値の近似公式とその誤差について
- ランダムデータに基づく数値積分とその最良形について
- ランダムな分布点での関数値に基づく一般化されたSimpson公式について
- 閉型4点近似積分公式の一般形と最高の精度を持つ公式について
- 数値積分の漸近展開によるEuler-Maclaurin総和公式の簡単な別証明
- シンプソン公式と同等の精度を持つ新台形公式について