Low-temperature Synthesis of Aluminium Carbide
スポンサーリンク
概要
- 論文の詳細を見る
The Hall-Héroult process, the only commercial technology for aluminum production requires high energy and is a major origin of perfluorocarbons and green house gases. A promising alternative process, carbothermal reduction of alumina to metallic aluminum has advantages of lower capital cost, less energy consumption, and lower emission of green house gases. Carbothermal reduction processes under development are based on formation of aluminum carbide-alumina melts at high temperatures. Solid state carbothermal reduction of alumina is possible at reduced CO partial pressure. This paper presents results of experimental study of carbothermal reduction of alumina into aluminum carbide in argon, helium and hydrogen atmospheres at 1500–1700°C. The reduction rate of alumina increased with increasing temperature, and was significantly faster in helium and hydrogen than in argon. Increasing gas flow rate and pellet porosity, and decreasing pressure favour the reduction.
- 2011-06-15
著者
-
Ostrovski Oleg
School Of Chemical Sciences And Engineering The University Of New South Wales
-
Zhang Guangqing
School Of Materials Sci. And Engineering The Univ. Of New South Wales
-
Zhang Guangqing
School Of Materials Science And Engineering University Of New South Wales
-
Liu Dongsheng
School Of Materials Science And Engineering University Of New South Wales
-
LI Jiuqiang
School of Materials Science and Engineering, University of New South Wales
-
Li Jiuqiang
School Of Materials Science And Engineering University Of New South Wales
関連論文
- Reduction of the Mixture of Titanomagnetite Ironsand and Hematite Iron Ore Fines by Carbon Monoxide
- Effects of Additives and Temperature on the Dissolution Rate and Diffusivity of MgO in CaO-Al_2O_3 Slags under Forced Convection
- Molecular Dynamics Simulation of Dilute Solutions of MeO and MeF_2 in the CaO-CaF_2 System
- Reduction of Manganese Ores by Methane-containing Gas
- Reduction of Titania-Ferrous Ore by Carbon Monoxide
- Effects of Preoxidation of Titania-Ferrous Ore on the Ore Structure and Reduction Behavior
- Reduction of Manganese Oxides by Methane-containing Gas
- Carbothermal Solid State Reduction of Manganese Ores : 3. Phase Development
- Carbothermal Solid State Reduction of Manganese Ores : 2. Non-isothermal and Isothermal Reduction in Different Gas Atmospheres
- Carbothermal Solid State Reduction of Manganese Ores : 1. Manganese Ore Characterisation
- Reduction of Titania-Ferrous Ore by Hydrogen
- Formation of Cementite from Titanomagnetite Ore
- Phase Development in Carbothermal Reduction of Ilmenite Concentrates and Synthetic Rutile
- Dissolution of Dense Lime in Molten Slags under Static Conditions
- Manganese Furnace Dust : Drying and Reduction of Zinc Oxide by Tar
- Sintering Pot Test of Manganese Ore with Addition of Manganese Furnace Dust
- Reduction of Zinc Oxide in Manganese Furnace Dust with Tar
- Wettability and Reduction of MnO is Slag by Carbonaceous Materials
- Wetting of Solid Iron, Nickel and Platinum by Liquid MnO-SiO_2 and CaO-Al_2O_3-SiO_2
- Low-temperature Synthesis of Aluminium Carbide
- Characterisation of Manganese Furnace Dust and Zinc Balance in Production of Manganese Alloys
- Carbothermal Reduction and Nitridation of Ilmenite Concentrates