Effects of Additives and Temperature on the Dissolution Rate and Diffusivity of MgO in CaO-Al_2O_3 Slags under Forced Convection
スポンサーリンク
概要
- 論文の詳細を見る
The dissolution rate of dense magnesia specimen in calcium aluminate based melts was measured in air over the temperature range of 1450–1600°C, using a rotating disk/cylinder technique. The measured dissolution rates were strongly dependent on the rotation speed with the results indicating mass transfer in the slag phase to be the rate-limiting step. At a given rotation speed, the dissolution rate was strongly dependent on the slag chemistry and temperature. The diffusivity of MgO in the slag was calculated from the dissolution rate and solubility data, using known mass transfer correlations. Addition of FeOx and CaF2 and increasing the temperature, resulted in substantial increase in the dissolution rate and deduced diffusivity of MgO in the slag.
- 2006-11-15
著者
-
Ostrovski Oleg
School Of Chemical Sciences And Engineering The University Of New South Wales
-
Ostrovski Oleg
School Of Materials Sci. And Engineering Univ. Of New South Wales
-
Amini Shahriar
School Of Chemical Sciences And Engineering The University Of New South Wales And Csiro Minerals
-
BRUNGS Michael
School of Chemical Sciences and Engineering, The University of New South Wales
-
JAHANSHAHI Sharif
High Temperature Processing, CSIRO Minerals
-
Brungs Michael
School Of Chemical Sciences And Engineering The University Of New South Wales
-
Jahanshahi Sharif
High Temperature Processing Csiro Minerals
関連論文
- Reduction of the Mixture of Titanomagnetite Ironsand and Hematite Iron Ore Fines by Carbon Monoxide
- Effects of Additives and Temperature on the Dissolution Rate and Diffusivity of MgO in CaO-Al_2O_3 Slags under Forced Convection
- Molecular Dynamics Simulation of Dilute Solutions of MeO and MeF_2 in the CaO-CaF_2 System
- Reduction of Manganese Ores by Methane-containing Gas
- Reduction of Titania-Ferrous Ore by Carbon Monoxide
- Effects of Preoxidation of Titania-Ferrous Ore on the Ore Structure and Reduction Behavior
- Reduction of Manganese Oxides by Methane-containing Gas
- Carbothermal Solid State Reduction of Manganese Ores : 3. Phase Development
- Carbothermal Solid State Reduction of Manganese Ores : 2. Non-isothermal and Isothermal Reduction in Different Gas Atmospheres
- Carbothermal Solid State Reduction of Manganese Ores : 1. Manganese Ore Characterisation
- Reduction of Titania-Ferrous Ore by Hydrogen
- Formation of Cementite from Titanomagnetite Ore
- Phase Development in Carbothermal Reduction of Ilmenite Concentrates and Synthetic Rutile
- Dissolution of Dense Lime in Molten Slags under Static Conditions
- Manganese Furnace Dust : Drying and Reduction of Zinc Oxide by Tar
- Sintering Pot Test of Manganese Ore with Addition of Manganese Furnace Dust
- Reduction of Zinc Oxide in Manganese Furnace Dust with Tar
- Wettability and Reduction of MnO is Slag by Carbonaceous Materials
- Wetting of Solid Iron, Nickel and Platinum by Liquid MnO-SiO_2 and CaO-Al_2O_3-SiO_2
- Low-temperature Synthesis of Aluminium Carbide
- Characterisation of Manganese Furnace Dust and Zinc Balance in Production of Manganese Alloys
- Carbothermal Reduction and Nitridation of Ilmenite Concentrates