Feasibility of an Advanced Waste Heat Transportation System Using High-temperature Phase Change Material (PCM)
スポンサーリンク
概要
- 論文の詳細を見る
- 2010-09-15
著者
-
Nomura Takahiro
Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University
-
Okinaka Noriyuki
Center for Advanced Research of Energy and Materials, Hokkaido University
-
OKINAKA Noriyuki
Hokkaido University
-
AKIYAMA Tomohiro
Hokkaido University
-
Oya Teppei
Division of Materials Science and Engineering, Graduate school of Engineering, Hokkaido University
-
Akiyama Tomohiro
Center For Advanced Research Of Energy Conversion Materials Hokkaido University
-
Akiyama Tomohiro
Center For Advanced Research Of Energy And Materials Faculty Of Engineering Hokkaido University
-
Nomura Takahiro
Division Of Materials Science And Engineering Graduate School Of Engineering Hokkaido University
-
Oya Teppei
Division Of Materials Science And Engineering Graduate School Of Engineering Hokkaido University
-
Akiyama Tomohiro
Center for Advanced Research of Energy Conversion Materials, Graduate School of Engineering, Hokkaido University
-
Okinaka Noriyuki
Center for Advanced Research of Energy Conversion Materials, Graduate School of Engineering, Hokkaido University
関連論文
- A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering
- Feasibility of an Advanced Waste Heat Transportation System Using High-temperature Phase Change Material (PCM)
- Technology of Latent Heat Storage for High Temperature Application: A Review
- Vickers hardness of β-SiAlON prepared by a combination of combustion synthesis and spark plasma sintering
- High Thermoelectric Performance of Rare Earth-doped SrTiO_3 Prepared by Combination of Combustion Synthesis(CS) and Spark Plasma Sintering(SPS)
- Thermoelectric Properties of Rare Earth-doped SrTiO3 Using Combination of Combustion Synthesis (CS) and Spark Plasma Sintering (SPS)
- Effects of Sintering Temperature on Thermoelectric Device of La-Doped Strontium Titanate in the Combination of Combustion Synthesis and Spark Plasma Sintering
- Thermoelectric Properties of Solution Combustion Synthesized Al-Doped ZnO
- Design of Cascaded Oxide Thermoelectric Generator
- Thermoelectric Properties of Combustion Synthesized and Spark Plasma Sintered Sr_R_xTiO_3 (R = Y, La, Sm, Gd, Dy, 0 < x ≦ 0.1)
- Thermoelectric Properties of Combustion-Synthesized Lanthanum-Doped Strontium Titanate
- Exergy Analysis of Hydriding Combustion Synthesis
- Combustion Synthesis of Doped Lanthanum Gallate as an Electrolyte for Solid Oxide Fuel Cells
- Exergy, CO_2 and Economical Analyses of the Hydrogen Production Using Waste Heat from Molten Slag in the Steel Industry
- Prediction of Granulated Slag Properties Produced from Spinning Disk Atomizer by Mathematical Model
- Characteristics of Glass Beads from Molten Slag Produced by Rotary Cup Atomizer
- Effect of diluents on high purity β-SiAlONs by mechanically activated combustion synthesis
- Optimization of Sintering Temperature for Maximizing Dimensionless Figure of Merit of La-Doped Strontium Titanate Thermoelectric Material in the Combination of Combustion Synthesis with Post Spark Plasma Sintering
- Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA
- Technical Feasibility Study of Waste Heat Transportation System Using Phase Change Material from Industry to City
- Latent Property of Defect-Controlled Metal Oxide : Nonstoichiometric Titanium Oxides as Prospective Material for High-Temperature Thermoelectric Conversion
- Synthesis of Zeolite-X from Waste Metals
- Hydriding Chemical Vapor Deposition of Metal Hydride Nano-Fibers
- Feasibility of an Advanced Waste Heat Transportation System Using High-temperature Phase Change Material (PCM)
- Development of PCM Reactor for Methane Steam Reforming
- Latent Heat of Amorphous Slags and Their Utilization as a High Temperature PCM
- Technology of Latent Heat Storage for High Temperature Application : A Review
- Mechanism of the Formation of Slag Particles by the Rotary Cylinder Atomization
- Development of a Rotary Cylinder Atomizing Method of Slag for the Production of Amorphous Slag Particles
- Exergy Analysis of Methane Steam Reformer Utilizing Steelmaking Waste Heat
- Process Analysis of the Effective Utilization of Molten Slag Heat by Direct Blast Furnace Cement Production System
- Thermoelectric Properties of Rare Earth-doped SrTiO_3 Using Combination of Combustion Synthesis (CS) and Spark Plasma Sintering (SPS)
- Experimental Studies on Characteristics of High-Temperature Syngas Plasma and Magnetohydrodynamic Power Generation
- Glassification and heat recovery system for molten slag
- Decomposition of Biogas into Hydrogen on Hot Slag
- Preface to the "Special Issue on Science and Technologies for the Effective Use of Unrecovered Energy in Steelworks"
- Thermoelectric Properties of Non-stoichiometric Titanium Oxides for Waste Heat Recovery in Steelworks
- Novel Combustion Route for SrTiO_3 Powders
- Latent Property of Defect-Controlled Metal Oxide: Nonstoichiometric Titanium Oxides as Prospective Material for High-Temperature Thermoelectric Conversion
- Size-controlled Ni nanoparticles formation by solution glow discharge
- A New Route to Synthesize β-SiAION:Eu²⁺ Phosphors for White Light-Emitting Diodes