局所的な交叉EAXを用いたGAの高速化とTSPへの適用
スポンサーリンク
概要
- 論文の詳細を見る
We propose an genetic algorithm (GA) that applies to the traveling salesman problem (TSP). The GA uses edge assembly crossover (EAX), which is known to be effective for solving the TSP. We first propose a fast implementation of a localized EAX where localized edge exchanges are used in the EAX procedure. We also propose a selection model with an effective combination of the localized EAX that can maintain population diversity at negligible computational costs. Edge entropy measure is used to evaluate population diversity. We demonstrate that the proposed GA is comparable to state-of-the-art heuristics for the TSP. Especially, the GA is superior to them on large instances more than 10,000 cities. For example, the GA found an optimal solution of brd14051 (14,051 cities instance) with a reasonable computational cost. The results are quite impressive because the GA does not use Lin-Kernighan local search (LKLS) even though almost all existing state-of-the-art heuristics for the TSP based on LKLS and its variants.
- 人工知能学会の論文
- 2007-11-01
著者
関連論文
- TSPにおける大域的多様性を考慮したGA
- TSPに対する枝組み立て交叉の挙動の分析
- 巡回セールスマン問題に対する交叉 : 枝組み立て交叉の提案と評価
- 局所的な交叉EAXを用いたGAの高速化とTSPへの適用
- 局所的多様性の損失を考慮した評価関数を用いたGAのTSPへの適用
- 人工市場アプローチにおける強化学習を用いた介入政策の分析
- 人工市場アプローチにおける強化学習を用いた介入政策の分析
- 均等に個体を分散化する適応的ニッチングGAの提案