局所的多様性の損失を考慮した評価関数を用いたGAのTSPへの適用
スポンサーリンク
概要
- 論文の詳細を見る
The edge assembly crossover (EAX) is considered the best available crossover for traveling salesman problems (TSPs). In this paper, a modified EAX algorithm is proposed. The key idea is to maintain population diversity by eliminating any exchanges of edges by the crossover that does not contribute to an improved evaluation value. For this, a new evaluation function is designed considering local diversity loss of the population. The proposed method is applied to several benchmark instances with up to 4461 cities. Experimental results show that the proposed method works better than other genetic algorithms using other improvements of the EAX. The proposed method can reach optimal solutions for most benchmark instances with up to 2392 cities with probabilities higher than 90%. For an instance called fnl4461, this method can reach an optimal solution with probability 60% when the population size is set to 300 -- an extremely small population compared to that needed in previous studies.
- 人工知能学会の論文
- 2006-11-01
著者
関連論文
- TSPにおける大域的多様性を考慮したGA
- TSPに対する枝組み立て交叉の挙動の分析
- 巡回セールスマン問題に対する交叉 : 枝組み立て交叉の提案と評価
- 局所的な交叉EAXを用いたGAの高速化とTSPへの適用
- 局所的多様性の損失を考慮した評価関数を用いたGAのTSPへの適用
- 人工市場アプローチにおける強化学習を用いた介入政策の分析
- 人工市場アプローチにおける強化学習を用いた介入政策の分析
- 均等に個体を分散化する適応的ニッチングGAの提案