A Comparative Study on the Θ Projection and the Ω Method
スポンサーリンク
概要
- 論文の詳細を見る
Nowadays, most of plant owners have sought for a deterministic technique to assess the remnant life of their old components. In the case of high temperature equipment serviced in the creep regime, the life assessment is more difficult than that for other damage like corrosion since the accumulated damage is not necessarily detectable. In order to predict the materials response at high temperatures, a constitutive equation precisely describing their creep behavior is required. In the current work, the Θ projection and the Ω method have been examined using creep data for 1.25Cr-0.5Mo and 2.25Cr-1Mo steel. Two different tertiary creep behaviors were observed in experiments, namely, proportional rise in strain rate with strain assumed in the former methodology and exponential rise in strain rate with strain assumed in the latter. The Θ projection has unexceptionally described the creep behavior well when the strain was lower than 10%, whereas the tertiary creep behavior observed in not a few experimental cases, in which the proportionality of strain rate-strain correlation is retained in almost the whole tertiary regime, cannot be explained by the Ω method. The apparent exponential rise in the tertiary creep rate found in the final stage of creep should be attributable to the experiment using a constant load technique, in which cross-sectional stress is increasing with strain. The creep behavior of actual components, which are exposed to the condition under the constant stress rather than constant load, would be more precisely described by the Θ projection.
- 2005-05-15
著者
-
Fujibayashi Shimpei
Idemitsu Engineering Co. Ltd. Chiba Jpn
-
Fujibayashi Shimpei
Engineering Center Idemitsu Engineering Co. Ltd.
-
FUJIBAYASHI Shimpei
Engineering Center
関連論文
- Life Prediction of Low Alloy Ferritic Steels Based upon the Tertiary Creep Behavior
- Hardness Based Creep Life Prediction for 2.25Cr-1Mo Superheater Tubes in a Boiler
- A Comparative Study on the Θ Projection and the Ω Method
- Cross-weld Creep Behavior and Life Prediction of Low Alloy Ferritic Steels
- Creep Behavior of 2.25Cr-1Mo Steel Shield Metal Arc Weldment
- Effect of Carbide Morphology on the Susceptibility to Type IV Cracking of a 1.25Cr-0.5Mo Steel
- Creep Behavior at the Intercritical HAZ of a 1.25Cr-0.5Mo Steel
- The Effect of Grain Boundary Cavities on the Tertiary Creep Behavior and Rupture Life of 1.25Cr-0.5Mo Steel Welds
- Grain Boundary Damage Evolution and Rupture Life of Service-exposed 1.25Cr-0.5Mo Steel Welds
- Creep Behavior and Rupture Life of the Simulated Intercritical HAZ for 1.25Cr-0.5Mo Steel under a Multiaxial Stress State