Effect of Carbide Morphology on the Susceptibility to Type IV Cracking of a 1.25Cr-0.5Mo Steel
スポンサーリンク
概要
- 論文の詳細を見る
Type IV cracking is considered to be the likely failure mode of ferritic steel welds when operated for long duration. The carbide morphology of the service-exposed 1.25Cr-0.5Mo steel weldment, which is composed of a forged flange and pipe fabricated from plates, has been examined before and after a creep test. Higher susceptibility to Type IV cracking was observed at the Intercritical HAZ (ICZ) on the flange side despite higher creep resistance of the parent material compared with a pipe. The change in carbide morphology during the creep exposure was the most pronounced at the flange ICZ. The coarse bainitic carbide originally existing depleted the intragranular carbides and significant variation in carbide density inside the ICZ was generated. In contrast, carbides at the pipe ICZ were more uniformly distributed. It was interpreted that higher susceptibility of the flange ICZ was accelerated by the heterogeneous distribution of carbide density and the resultant variation of creep strength and would enhance grain boundary sliding associated with creep strain accumulation.It was proved that the susceptibility to Type IV cracking was highly dependent upon the characteristics of a parent material by experiments using simulated ICZ specimens. Significant difference in the effect of heat treatment to simulate the microstructure at the ICZ upon the creep strength was observed between a flange and pipe. The simulated ICZ specimen generated by a pipe parent showed no apparent change due to the heat treatment compared with a parent material. On the contrary, it reduced the time to rupture and changed the fracture mode from transgranular to intergranular for a flange material. The feature of grain boundary cracking was similar to that of actual weldment which took place preferentially at the inclined grain boundaries to the tensile direction, that was to be considered the evidence of grain boundary sliding.
- 社団法人 日本鉄鋼協会の論文
- 2003-05-15
著者
-
Endo Takao
Faculty Of Engineering Yokohama National University
-
Fujibayashi Shimpei
Engineering Center Idemitsu Engineering Co. Ltd.
-
FUJIBAYASHI Shimpei
Engineering Center
関連論文
- Life Prediction of Low Alloy Ferritic Steels Based upon the Tertiary Creep Behavior
- Creep Modeling for Life Evaluation of Heat-resistant Steel with a Martensitic Structure
- Creep Modeling for Life Evaluation on of 9〜12%Cr Steels for Fossil Fuel Power Generation
- Hardness Based Creep Life Prediction for 2.25Cr-1Mo Superheater Tubes in a Boiler
- A Comparative Study on the Θ Projection and the Ω Method
- Cross-weld Creep Behavior and Life Prediction of Low Alloy Ferritic Steels
- Creep Behavior of 2.25Cr-1Mo Steel Shield Metal Arc Weldment
- Effect of Carbide Morphology on the Susceptibility to Type IV Cracking of a 1.25Cr-0.5Mo Steel
- Creep Behavior at the Intercritical HAZ of a 1.25Cr-0.5Mo Steel
- The Effect of Grain Boundary Cavities on the Tertiary Creep Behavior and Rupture Life of 1.25Cr-0.5Mo Steel Welds
- Grain Boundary Damage Evolution and Rupture Life of Service-exposed 1.25Cr-0.5Mo Steel Welds
- Creep Behavior and Rupture Life of the Simulated Intercritical HAZ for 1.25Cr-0.5Mo Steel under a Multiaxial Stress State