多層転位撚線型超電導ケーブルの開発
スポンサーリンク
概要
- 論文の詳細を見る
- 2000-10-31
著者
-
後藤 謙次
フジクラ
-
長谷川 隆代
昭和電線電纜
-
鹿島 直二
中部電力(株)技術開発本部 電力技術研究所
-
武田 薫
(株)フジクラ
-
武田 薫
Super-gm
-
武田 薫
株式会社 フジクラ
-
後藤 謙次
(株)フジクラ
-
長屋 重夫
中部電力(株)技術開発本部 電力技術研究所
-
西岡 淳一
昭和電線電纜株式会社
-
大野 光一
(株)フジクラ
-
後藤 謙次
株式会社フジクラ 材料技術研究所
-
大野 光一
フジクラ
-
後藤 謙次
株式会社フジクラ
-
鈴木 知史
(株)フジクラ
-
西岡 淳一
昭和電線ケーブルシステム
-
長屋 重夫
中部電力(株) 電力技術研究所
関連論文
- in-situ 法Cu-Nb複合線材の繰返し負荷に対する機械-電気的特性変化
- 超電導線材の交流損失の簡易測定法(5)
- 304 in-situ 法 Cu-Nb 複合線材の疲労特性
- 異なる組成の仮焼粉で作製したBi2212丸線材の超伝導特性とその組織
- TFA-MOD法YBCOテープ線材を用いた電流リードの開発(3) : 500A級電流リードユニットの作製とその特性
- RF-Sputter 法によるRe-123系線材用CeO_2中間層の開発(3) : IBAD-MgO基板上のCeO_2中間層の成膜
- RF-Sputter 法によるRe-123系線材用CeO_2中間層の開発(2)
- RF-Sputtering 法によるRe-123系線材用CeO_2中間層の開発
- TFA-MOD法による低コストYBCO線材の開発(9) : TFA-MOD YBCO線材量産プロセスにおける歩留向上の検討
- 交流用 in-situ 法Nb3Sn線材の開発(3)
- in-situ 法Nb_3Sn導体の導体試験 : 繰り返し応力印加
- 交流用 in-situ 法Nb_3Sn線材の開発
- MOD-RE_2Zr_2O_7を用いたREBCO線材用低コスト基板平坦化技術の開発
- TFA-MOD法による低コストYBCO線材の開発(8) : TFA-MOD YBCO長尺テープ線材量産化の検討
- TFA-MOD法YBCOテープ線材を用いた電流リードの開発(2) : 平角型電流リードの作製とその特性
- TFA-MOD法YBCOテープ線材を用いた電流リードの開発(1) : 円筒型電流リードの作製とその特性
- TFA-MOD法による低コストYBCO線材の開発(7) : 500級線材の開発
- TFA-MOD法により作製したREBCO線材の磁場特性
- Batch 式焼成プロセスによるNi-W基板上YBCO長尺線材の作製(2) : Batch 式本焼による50m長線材の作製
- Ni-W基板を用いたTFA-YBCO高Ic線材の検討
- TFA-MODによるY系線材高Ic化のための中間層特性向上の検討
- Batch 式焼成プロセスによるNi-W基板上YBCO線材の長尺線材の作製
- TFA-MOD法による低コストYBCO線材の開発(6) : 長尺線材における臨界電流向上
- TFA-MOD法により作製したYBCO線材の磁界特性とソレノイドコイルの試作
- 配向Ni-W合金基板を用いたYBCO線材の開発
- TFA-MOD法による低コストYBCO線材の開発
- MOD法を用いた長尺YBCO線材の開発
- 16th International Symposium on Superconductivity [ISS2003]
- TFA-MOD法を用いたYBCO線材の検討(2)
- 超電導線材の交流損失の簡易測定法(6)
- 超電導線材の交流損失の簡易測定法(4)
- 過冷却液体窒素を用いたBi-2212大容量導体の評価
- Bi2212長尺ラザフォード導体の評価
- 10kA級Bi2212ラザフォード導体の開発
- ビードコーティング法によるTFA-YBCO線材の開発
- TFA-MOD法を用いたYBCO線材の検討(1)
- 高磁場コンパクト高温超電導SMESの開発
- 509 in-situ法Cu-Nb複合線材の疲労特性(疲労)
- Bi-2212ラザフォード型圧縮成型導体の交流損失特性
- 配向NiW基材上に形成したフィラメント状YBCO線材の電流輸送特性
- TFA-MODプロセスにおける Batch 式本焼焼成プロセスによる本焼条件の最適化
- 酸化物超電導電流リードの機械及び超電導特性
- Ag添加Bi系超電導体を用いた電流リードの検討(5)
- Bi2212ラザフォード導体の機械特性
- Bi-2212線材の開発と導体化
- Bi2212大容量導体の開発(IV)
- Bi-2212ラザーフォード型圧縮成型導体の開発
- Bi2212大容量導体の開発(III)
- Bi-2212テープ線材の開発
- Bi-2212多芯平角線材を用いたコイル開発
- Bi2212平角線材の開発
- 10kA級HTS導体の試作開発(2)
- 10kA級HTS導体の開発
- Bi-2212線材の高性能化
- PAIR法によるBi2212多層線材の開発(III)
- PAIRプロセスBi-2212/Ag多層線材を用いた超電導マグネットの開発
- ブロンズ法により製作した繊維強化型Nb_3Sn超電導線材の小コイル試験
- 繊維強化型Nb_3Sn線材の臨界電流密度の不可逆歪み特性
- 複合加工法により製作した繊維強化型Nb_3Sn超電導線材の特性
- 1kA-25Ω級磁界式PCSの開発
- 磁界式PCSのスイッチング特性
- 1kA-25Ω級磁界式PCSのスイッチング特性(II)
- 1kA級磁界式超電導永久電流スイッチの開発
- 1kA-25Ω級磁界式PCSのスイッチング特性
- 1kA級磁界式PCSの動作特性
- 交流超伝導マグネットによる磁界式PCSの高速制御試験
- 1kA級磁界式永久電流スイッチの実証試験
- 1kA級磁界式永久電流スイッチの特性
- 交流用Nb3Sn導体の開発
- 交流用 in-situ 法Nb3Sn線材の開発(7)
- 交流用 in-situ 法Nb3Sn線材の開発(6)
- 銀合金シースBi2223線材の開発III
- 多層転位撚線型超電導ケーブルの開発
- 交流用Nb3Sn超伝導導体
- 転位撚線構造を適用した超電導ケーブルの歪設計
- in-situ法Cu-Nb多芯線材の室温における疲労強度
- 高性能FTO基板
- 高耐熱特性を有するFTO/ITO透明導電ガラス (特集 本格普及に向かう太陽電池--応用展開が進む材料・技術開発)
- 透明導電ガラス
- 技術トピック 耐熱性500℃以上の透明導電ガラスの開発
- 512 in-situ 法 Cu-Nb 複合線材の極低温疲労強度
- CuNb補強安定化Nb_3Sn線材の臨界電流に及ぼす横圧縮応力効果
- 転位撚線構造におけるY系線材の曲げ特性(2)
- 転位撚線構造におけるY系線材の曲げ特性
- 各種テープ基材による転位撚りセグメント導体の開発
- B-1-130 ITOアンテナの基礎特性(B-1.アンテナ・伝播B(アンテナ一般),一般講演)
- 転位撚線型導体の開発
- 高温超電導ケーブルにおける液体窒素圧力損失の検討
- CuNb補強安定化Nb_3Sn線材の歪み測定と評価
- 高電磁力下におけるR&W補強安定化Nb_3Snコイルの歪み特性と超伝導特性
- 交流用 in-situ 法Nb3Sn線材の開発(5)
- CuNb補強安定化Nb_3Sn線材のR&W実証試験
- Cu-Nb補強安定化Nb3Sn線材の特性
- 交流用Nb3Sn導体の開発
- 交流用 in-situ 法Nb3Sn線材の開発(4)
- CuNb補強・安定化(Nb,Ti)_3Sn導体における安定性
- kA級交流用超電導導体の開発とコイルの試作(II)
- CuNb補強・安定化(Nb,Ti)_3Sn導体における安定性のdI/dt依存性(II)
- CuNb補強安定化Nb_3Sn線材の曲げ歪み特性
- CuNb補強安定化Nb_3Snコイルの実証試験