Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Solidification : Experiments and Thermodynamic Calculations
スポンサーリンク
概要
- 論文の詳細を見る
The effect of Al on the evolution of non-metallic inclusions in the Mn-Si-Ti-Mg deoxidized steels during solidification were investigated based on the experiments and thermodynamic calculations. The inclusions belonged to the MgO-TiO2-Ti2O3-Al2O3+MnS+TiN system. In particular, the major oxide inclusion was the Mg-Ti-Al-O spinel phase of which composition was continuously changed from the Mg-Ti-O to MgAl2O4 with the concentration Al in steels. The spinel compositions calculated from thermodynamic databases are in good agreement with experimental results. TiN was only observed on the surface of MnS. MgAl2O4 aggregates were also observed at high Al concentration. In general, the evolution of inclusions is well explained by thermodynamic calculations.
- 社団法人 日本鉄鋼協会の論文
- 2004-06-15
著者
-
Lee Hae-geon
Department Of Materials Science And Engineering Pohang University Of Science And Technology (postech
-
OH Kyung-Shik
Technological Research Laboratory
-
JUNG In-Ho
Research Institute of Industrial Science & Technology (RIST)
-
Park Sang-chae
Department Of Materials Science & Engineering Pohang University Of Science And Technology (poste
-
Jung In-ho
Research Institute Of Industrial Science And Technology
-
Lee Hae-geon
Department Of Materials Science & Engineering Pohang University Of Science And Technology (poste
-
Oh Kyung-shik
Technological Research Laboratory Posco
-
Lee Hae-geon
Department Of Materials Science & Engineering Pohang University Of Science & Technology (pos
関連論文
- Evolution of Size, Composition, and Morphology of Primary and Secondary Inclusions in Si/Mn and Si/Mn/Ti Deoxidized Steels
- Decarburisation of Liquid Fe-C-S Drops Using Multiple Oxidants of O_2, CO_2 and H_2O
- Decarburization Kinetics of Fe-C-S Droplets with H_2O
- Effect of System Geometry on Gas Phase Mass Transfer in Electromagnetic Levitation Assembly
- Phase Equilibria and Thermodynamic Properties of the CaO-MnO-Al_2O_3-SiO_2 System by Critical Evaluation, Modeling and Experiment
- Critical Thermodynamic Evaluation and Optimization of the CaO-MnO-SiO_2 and CaO-MnO-Al_2O_3 Systems
- Thermodynamic Modeling of the CaO-MnO-SiO_2-Al_2O_3 System to Predict Inclusion Behavior in Mn/Si Deoxidized Steel
- Thermodynamic Modeling of Gas Solubility In Molten Slags (I) : Carbon and Nitrogen
- Smelting Reduction Mechanism of Fe-O-S Melts Using Solid Carbon
- Sulfur Transfer in Dynamic Conditions of Liquid Steel Drops Falling through Slag Layer
- Dissolution Rate of Al_2O_3 into Molten CaO-SiO_2-Al_2O_3 Slags
- Particle Removal from Liquid Phase Using Fine Gas Bubbles
- Decomposition of Li_2CO_3 by Interaction with SiO_2 in Mold Flux of Steel Continuous Casting
- Decomposition of Na_2CO_3 by Interaction with SiO_2 In Mold Flux of Steel Continuous Casting
- Modelling of Break-up of Liquid Drops Impacting on Immiscible Liquids
- Break-up Phenomena of Liquid Drops Impacting on Immiscible Liquids
- Cold Model Study on Inclusion Removal from Liquid Steel Using Fine Gas Bubbles
- A New Approach to Molten Steel Refining Using Fine Gas Bubbles
- Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation
- Thermodynamic Modeling of Gas Solubility in Molten Slags (II) : Water
- Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Solidification : Experiments and Thermodynamic Calculations
- Dissolution Behavior of Al_2O_3 and MgO Inclusions in the CaO-Al_2O_3-SiO_2 Slags : Formation of Ring-like Structure of MgAl_2O_4 and Ca_2SiO_4 around MgO Inclusions
- The Prediction of Gas Residence Times in Foaming CaO-SiO_2-FeO Slags
- Model Development of Slag Foaming
- Physical Model Studies on Slag Foaming
- Thermodynamic Evaluation of the Surface Tension of Molten CaO-SiO_2-AI_2O_3 Ternary Slag
- Wetting of Solid Al_2O_3 with Molten CaO-Al_2O_3-SiO_2
- Silicon and Manganese Transfer in Dynamic Conditions of Carbon-saturated Liquid Iron Drops Falling through Slag Layer
- 耐火物の浸食に対する熱力学データベースの利用技術
- Reoxidation of Al-Ti Containing Steels by CaO-Al_2O_3-MgO-SiO_2 Slag
- Precipitation and Growth of Non-metallic Inclusions during Solidification of Steels
- Inclusions Chemistry for Mn/Si Deoxidized Steels : Thermodynamic Predictions and Experimental Confirmations
- Critical Falling Heights for the First Break-up of Liquid Drops Impacting on Immiscible Liquids
- Numerical Modeling of Nucleation and Growth of Inclusions in Molten Steel Based on Mean Processing Parameters
- A Method for Evaluating Composition of Complex Inclusions Comprising Oxides and MnS in Si/Mn/Ti Deoxidized Steels
- Sulphur Partition between CaO-SiO2-Ce2O3 Slags and Carbon-saturated Iron.