Silicon and Manganese Transfer in Dynamic Conditions of Carbon-saturated Liquid Iron Drops Falling through Slag Layer
スポンサーリンク
概要
- 論文の詳細を見る
Transfer of silicon and manganese as an iron drop falls through a slag layer has been investigated by an experimental study. Carbon-saturated liquid iron drops containing different amounts of silicon were allowed to fall for 1 sec through CaO-SiO2-Al2O3-MnO slag at 1773 K. The rate of mass transfer of silicon to the iron drop from the slag was found to be two to three orders of magnitude faster than that previously reported in static equilibration laboratory studies. The rate of manganese transfer was dependent on the silicon transfer: when the silicon transfer is fast, the manganese transfer is also fast and <I>vice versa</I>. The iron drops broke up while falling through the slag. The results of the present study indicate that for reactions involving solute transfer across liquid-liquid interfaces, significant changes in reaction rate and mechanism occur in dynamic contact conditions. Several possible reasons for these changes are discussed. It was tentatively concluded that the emulsification of the interface plays the major role in enhancing the transfer rates.
- 社団法人 日本鉄鋼協会の論文
- 1998-03-15
著者
-
Hayes Peter
Department Of Mining Minerals And Materials Engineering The University Of Queensland
-
Hayes Peter
Department Of Mining And Metallurgical Engineering The University Of Queensland
-
Lee Hae-geon
Department Of Materials Science & Engineering Pohang University Of Science & Technology (pos
-
WU Andrew
Department of Mining, Minerals and Materials Engineering, The University of Queensland
-
Wu Andrew
Department Of Mining Minerals And Materials Engineering The University Of Queensland
-
Lee Hae-geon
Department Of Materials Science And Metallurgical Engineering Pohang University Of Science And Techn
関連論文
- Evolution of Size, Composition, and Morphology of Primary and Secondary Inclusions in Si/Mn and Si/Mn/Ti Deoxidized Steels
- Decarburisation of Liquid Fe-C-S Drops Using Multiple Oxidants of O_2, CO_2 and H_2O
- Decarburization Kinetics of Fe-C-S Droplets with H_2O
- Effect of System Geometry on Gas Phase Mass Transfer in Electromagnetic Levitation Assembly
- Phase Equilibria and Thermodynamic Properties of the CaO-MnO-Al_2O_3-SiO_2 System by Critical Evaluation, Modeling and Experiment
- Critical Thermodynamic Evaluation and Optimization of the CaO-MnO-SiO_2 and CaO-MnO-Al_2O_3 Systems
- Smelting Reduction Mechanism of Fe-O-S Melts Using Solid Carbon
- Sulfur Transfer in Dynamic Conditions of Liquid Steel Drops Falling through Slag Layer
- Dissolution Rate of Al_2O_3 into Molten CaO-SiO_2-Al_2O_3 Slags
- Particle Removal from Liquid Phase Using Fine Gas Bubbles
- Decomposition of Li_2CO_3 by Interaction with SiO_2 in Mold Flux of Steel Continuous Casting
- Decomposition of Na_2CO_3 by Interaction with SiO_2 In Mold Flux of Steel Continuous Casting
- Modelling of Break-up of Liquid Drops Impacting on Immiscible Liquids
- Break-up Phenomena of Liquid Drops Impacting on Immiscible Liquids
- Cold Model Study on Inclusion Removal from Liquid Steel Using Fine Gas Bubbles
- A New Approach to Molten Steel Refining Using Fine Gas Bubbles
- Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation
- Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Solidification : Experiments and Thermodynamic Calculations
- The Prediction of Gas Residence Times in Foaming CaO-SiO_2-FeO Slags
- Model Development of Slag Foaming
- Physical Model Studies on Slag Foaming
- Thermodynamic Evaluation of the Surface Tension of Molten CaO-SiO_2-AI_2O_3 Ternary Slag
- Wetting of Solid Al_2O_3 with Molten CaO-Al_2O_3-SiO_2
- Silicon and Manganese Transfer in Dynamic Conditions of Carbon-saturated Liquid Iron Drops Falling through Slag Layer
- Reoxidation of Al-Ti Containing Steels by CaO-Al_2O_3-MgO-SiO_2 Slag
- Precipitation and Growth of Non-metallic Inclusions during Solidification of Steels
- Inclusions Chemistry for Mn/Si Deoxidized Steels : Thermodynamic Predictions and Experimental Confirmations
- Critical Falling Heights for the First Break-up of Liquid Drops Impacting on Immiscible Liquids
- Numerical Modeling of Nucleation and Growth of Inclusions in Molten Steel Based on Mean Processing Parameters
- A Method for Evaluating Composition of Complex Inclusions Comprising Oxides and MnS in Si/Mn/Ti Deoxidized Steels
- Sulphur Partition between CaO-SiO2-Ce2O3 Slags and Carbon-saturated Iron.