Critical Falling Heights for the First Break-up of Liquid Drops Impacting on Immiscible Liquids
スポンサーリンク
概要
- 論文の詳細を見る
Experimental studies investigating the break-up of liquid drops impacting on immiscible target liquids have been undertaken. The critical falling height at which the first break-up occurs has been found to be proportional to the drop mass to the power of –0.65±0.05, irrespective of change in physical properties of either drop or target liquid, and can be related to the drop mass by the following equation:<I>H</I>cr=<I>k</I>c<I>W</I><I>n</I>where <I>H</I>cr is the critical falling height, <I>k</I>c is the proportionality constant, <I>W</I> is the mass of liquid drop, and <I>n</I> is the power (–0.65±0.05). The value of <I>k</I>c varies with change in physical properties of drop or target liquid, and hence the critical falling height is dependent on the physical properties of both drop and target liquids. The mechanism of the first break-up changes from the cavity-pulled to the rebounding-jet break-up as the viscosity of either the drop or target liquid increases.
- 社団法人 日本鉄鋼協会の論文
- 1998-11-15
著者
-
Hayes Peter
Department Of Mining And Metallurgical Engineering The University Of Queensland
-
LEE Kae-young
Kwangyang Iron and Steel Research Laboratories, POSCO
-
Lee Hae-geon
Department Of Materials Science & Engineering Pohang University Of Science & Technology (pos
-
Lee Kae-young
Kwangyang Iron And Steel Research Laboratories Posco
-
Lee Hae-geon
Department Of Materials Science And Metallurgical Engineering Pohang University Of Science And Techn
関連論文
- Evolution of Size, Composition, and Morphology of Primary and Secondary Inclusions in Si/Mn and Si/Mn/Ti Deoxidized Steels
- Decarburisation of Liquid Fe-C-S Drops Using Multiple Oxidants of O_2, CO_2 and H_2O
- Decarburization Kinetics of Fe-C-S Droplets with H_2O
- Effect of System Geometry on Gas Phase Mass Transfer in Electromagnetic Levitation Assembly
- Phase Equilibria and Thermodynamic Properties of the CaO-MnO-Al_2O_3-SiO_2 System by Critical Evaluation, Modeling and Experiment
- Critical Thermodynamic Evaluation and Optimization of the CaO-MnO-SiO_2 and CaO-MnO-Al_2O_3 Systems
- Smelting Reduction Mechanism of Fe-O-S Melts Using Solid Carbon
- Sulfur Transfer in Dynamic Conditions of Liquid Steel Drops Falling through Slag Layer
- Dissolution Rate of Al_2O_3 into Molten CaO-SiO_2-Al_2O_3 Slags
- Particle Removal from Liquid Phase Using Fine Gas Bubbles
- Decomposition of Li_2CO_3 by Interaction with SiO_2 in Mold Flux of Steel Continuous Casting
- Decomposition of Na_2CO_3 by Interaction with SiO_2 In Mold Flux of Steel Continuous Casting
- Modelling of Break-up of Liquid Drops Impacting on Immiscible Liquids
- Break-up Phenomena of Liquid Drops Impacting on Immiscible Liquids
- Cold Model Study on Inclusion Removal from Liquid Steel Using Fine Gas Bubbles
- A New Approach to Molten Steel Refining Using Fine Gas Bubbles
- Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation
- Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Solidification : Experiments and Thermodynamic Calculations
- The Prediction of Gas Residence Times in Foaming CaO-SiO_2-FeO Slags
- Model Development of Slag Foaming
- Physical Model Studies on Slag Foaming
- Thermodynamic Evaluation of the Surface Tension of Molten CaO-SiO_2-AI_2O_3 Ternary Slag
- Wetting of Solid Al_2O_3 with Molten CaO-Al_2O_3-SiO_2
- Silicon and Manganese Transfer in Dynamic Conditions of Carbon-saturated Liquid Iron Drops Falling through Slag Layer
- Reoxidation of Al-Ti Containing Steels by CaO-Al_2O_3-MgO-SiO_2 Slag
- Precipitation and Growth of Non-metallic Inclusions during Solidification of Steels
- Inclusions Chemistry for Mn/Si Deoxidized Steels : Thermodynamic Predictions and Experimental Confirmations
- Critical Falling Heights for the First Break-up of Liquid Drops Impacting on Immiscible Liquids
- Numerical Modeling of Nucleation and Growth of Inclusions in Molten Steel Based on Mean Processing Parameters
- A Method for Evaluating Composition of Complex Inclusions Comprising Oxides and MnS in Si/Mn/Ti Deoxidized Steels
- Sulphur Partition between CaO-SiO2-Ce2O3 Slags and Carbon-saturated Iron.