吉田 憲一 | Department of Applied Math, Okayama University of Science
スポンサーリンク
概要
関連著者
-
吉田 憲一
Department Of Applied Mathematics Okayama University Of Science
-
吉田 憲一
Department of Applied Math, Okayama University of Science
-
吉田 憲一
Department Of Applied Mathematics Faculty Of Science Okayama University Of Science
-
吉田 憲一
岡山理科大学
-
織田 進
Matsusaka Commercial High School
-
織田 進
Department Of Mathematics Faculty Of Education Kochi University
-
馬場 清
Department Of Mathematics Faculty Of Education And Welfare Science Oita University
-
金光 三男
Department of Mathematics, Aichi University of Education
-
織田 進
宇治山田高校
-
金光 三男
愛知教育大学数学教育講座
-
金光 三男
愛知教育大学数学講座
-
小田 進
Department Of Mathematics Faculty Of Education Kochi University
-
金光 三男
中部大学現代教育学部
-
金光 三男
愛知教育大学
-
馬場 清
Department of Mathematics, Faculty of Education and Welfare Science Oita University
-
佐藤 淳郎
Department of Mathematics Faculty of Education Kochi University
-
佐藤 淳朗
Osaka Junior College
-
佐藤 淳郎
Osaka Junior College
-
佐藤 淳郎
Department Of Mathematics Fuculty Of Education Kochi University
-
吉田 憲一/佐藤
Department Of Applied Mathematics Okayama University Of Science/department Of Mathematics Faculty Of
-
吉田 憲一/織田
Department Of Applied Math Okayama University Of Science/matsusaka Commercial High School/osaka Juni
-
佐藤 淳郎/狐塚
Department of Mathematics, Toyama University/Osaka Junior College
-
吉田 憲一
Department of Applied Mathematics, Okayama University of Sience
-
馬場 清
Department of Mathematics Faculty of Education and Welfare Science, Oita University
著作論文
- A note on a condition for the obstruction ideal of an element α to be equal to the obstruction ideal of a linear fractional transform of α
- Flatness and some other properties of a finitely generated extension of anti-integral elements over a Noetherian domain
- A note on some conditions on integrality of the intersection of two simple ring extensions
- Linear Fractional Transforms of an Anti-integral Element over a Noetherian Domain
- Some Properties of Generalized Denominator Ideals
- On Finite Generation of an Intersection R〔α〕∩K
- Finitely Generated Ring-Extensions of Anti-Integral Type
- Remarks on the Flatness of Anti-Integral Extensions
- Super-Primitive Ideals and Sharma Polynomials in Polynomial Rings
- Flatness and LCM-stability of anti-integral extensions over Noetherian domains