Electron Temperature Distribution and Hot Spots in Quantum Hall Systems(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
スポンサーリンク
概要
- 論文の詳細を見る
The spatial variations of the electron temperature in the vicinity of metallic current contacts in a quantum Hall system are calculated based on thermohydrodynamics with an energy gain. It is shown that, at large currents, hot spots with high electron temperatures appear at diagonally opposite corners of a sample. At small currents, however, the electron temperature at one of the corners is lower than the lattice temperature, while that at the other corner is higher than the lattice temperature. As a function of the chemical potential, the electron temperature at each corner shows quantum oscillations.
- 一般社団法人日本物理学会の論文
- 2005-01-15
著者
-
Suzuura Hidekatsu
Department Of Physics Tokyo Institute Of Technology
-
Akera Hiroshi
Department Of Applied Physics Faculty Of Engineering Hokkaido University
-
Ise Tamaki
Department Of Applied Physics Graduate School Of Engineering Hokkaido University
関連論文
- Electronic States of BCN Alloy Nanotubes in a Simple Tight-Binding Model (Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Electronic States of BCN Alloy Nanotubes in a Simple Tight-Binding Model
- Presence of Perfectly Conducting Channel in Metallic Carbon Nanotubes(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Band Structures and Anomalous Softening of Graphite Intercalation Compounds C_8K_Rb_x
- Self-Consistent Calculation of the Charging Energy in a Quantum Dot Coupled to Leads
- Diagonal Conductivity due to Tunneling in Quantum Hall Systems in the High Electron-Temperature Regime
- Electronic Processes at the Breakdown of the Quantum Hall Effect : Condensed Matter: Electronic Properties, etc.
- Electron Temperature Distribution and Hot Spots in Quantum Hall Systems(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Spatial Distributions of Electron Temperature in Quantum Hall Systems with Slowly-Varying Confining Potentials(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Thermohydrodynamics in Quantum Hall Systems(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Hydrodynamic Equations in Quantum Hall Systems at Large Currents
- Hydrodynamic Equation for the Breakdown of the Quantum Hall Effect in a Uniform Current : Condensed Matter: Electronic Properties, etc.
- Aharonov-Bohm Effect in Quantum Dots ( Quantum Dot Structures)
- Many-Body Effects in Coherent Transmission through a Quantum Dot with Two Degenerate Levels
- Effective-Mass Theory of Electron Correlations in Band Structure of Semiconducting Carbon Nanotubes (Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Effective-Mass Theory of Electron Correlations in Band Structure of Semiconducting Carbon Nanotubes
- Four-Wave Mixing Theory at the Excitonic Resonance:Weakly Interacting Boson Model
- Transmission through a Quantum Dot with Two Orbitals
- Electron Temperature Distribution and Hot Spots in Quantum Hall Systems(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Spatial Distributions of Electron Temperature in Quantum Hall Systems with Slowly-Varying Confining Potentials(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)