Derivatives of rotation number of one parameter families of circle diffeomorphisms
スポンサーリンク
概要
- 論文の詳細を見る
We consider the rotation number ρ(t) of a diffeomorphism ft = Rt $\circ$ f, where Rt is the rotation by t and f is an orientation preserving C∞ diffeomorphism of the circle S1. We shall show that if ρ(t) is irrational$\limsup_{t′ → t}$ (ρ(t′) − ρ(t)) / (t′ − t) ≥ 1.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
著者
関連論文
- 2P138 リボソームの粗視化MDによる翻訳での動的振舞の研究(核酸-相互作用・複合体,第48回日本生物物理学会年会)
- On the global rigidity of split Anosov R^n-actions
- Fundamental Properties of MIS Solar Cells : I-2: SILICON SOLAR CELLS (II)
- MIS Silicon Solar Cells with In_2O_3 Antireflective Coating
- Ends of leaves of Lie foliations
- Perturbation of the hope flow and transverse foliations : Dedicated to Professor Ken'ichi Shiraiwa on his 60th berthday
- Nonsingular expansive flows on 3-manifolds and foliations with circle prong singularities
- Derivatives of rotation number of one parameter families of circle diffeomorphisms