Imposed strain localization in the lower crust on seismic timescales
スポンサーリンク
概要
- 論文の詳細を見る
We show using numerical model experiments that upper crustal faults can impose ductile localization in the mid and lower crust over the seismic cycle, with strain-rates and integrated creep strain enhanced by a factor of 10, or a factor of 100 if lower crust is also thermally weakened. Imposed ductile localization is caused by the transfer in stress from the lower tip of the frictional fault to the mid-crust. Within the weak ductile mid-lower crust, this stress transfer also promotes significantly enhanced creep rates in a lobe that extends down-dip from the lower end of the fault. Comparison of model results with the Alpine Fault of New Zealand, shows how the interaction of faulting with other localization mechanisms can account for key aspects of the geodetic strain accumulating across the Alpine Fault. Localization of ductile strain in the lower crust imposed by faulting in the upper crust could explain the extension of major faults into the lower crust observed in seismic imaging.
- 公益社団法人 日本地震学会、地球電磁気・地球惑星圏学会 、特定非営利活動法人 日本火山学会、日本測地学会、日本惑星科学会の論文
著者
-
Ellis Susan
Geological And Nuclear Sciences
-
Stockhert Bernhard
Institute Of Geology Mineralogy And Geophysics Ruhr University
関連論文
- Imposed strain localization in the lower crust on seismic timescales
- Imposed strain localization in the lower crust on seismic timescales