An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type
スポンサーリンク
概要
- 論文の詳細を見る
We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.
- 日本数学会函数方程式論分科会の論文
日本数学会函数方程式論分科会 | 論文
- The Landau-Lifshitz Flow of Maps into the Lobachevsky Plane
- Uniqueness of Solutions for Zakharov Systems
- Characterization of Wave Front Sets in Fourier-Lebesgue Spaces and Its Application
- Affine Weyl Group Symmetry of the Garnier System
- Exact Eigenvalues and Eigenfunctions Associated with Linearization for Chafee-Infante Problem