Affine Weyl Group Symmetry of the Garnier System
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we show that the Garnier system in n-variables has affine Weyl group symmetry of type B(1)n+3. We also formulate the τ-functions for the Garnier system (or the Schlesinger system of rank 2) on the root lattice Q(Cn+3) and show that they satisfy Toda equations, Hirota-Miwa equations and bilinear differential equations.
- 日本数学会函数方程式論分科会の論文
日本数学会函数方程式論分科会 | 論文
- The Landau-Lifshitz Flow of Maps into the Lobachevsky Plane
- Uniqueness of Solutions for Zakharov Systems
- Characterization of Wave Front Sets in Fourier-Lebesgue Spaces and Its Application
- Affine Weyl Group Symmetry of the Garnier System
- Exact Eigenvalues and Eigenfunctions Associated with Linearization for Chafee-Infante Problem