Uniqueness of Solutions for Zakharov Systems
スポンサーリンク
概要
- 論文の詳細を見る
We prove that the weak solution of the Cauchy problem for the Klein-Gordon-Zakharov system and for the Zakharov system is unique in the energy space for the former system, and in some larger space for the latter system, in dimensions three or lower. In the three dimensional case, these are the largest Sobolev spaces where the local wellposedness has been proven so far. Our proof uses infinite iteration, where the solution is fixed but the function spaces are converging to the desired ones in the limit.
- 日本数学会函数方程式論分科会の論文
日本数学会函数方程式論分科会 | 論文
- The Landau-Lifshitz Flow of Maps into the Lobachevsky Plane
- Uniqueness of Solutions for Zakharov Systems
- Characterization of Wave Front Sets in Fourier-Lebesgue Spaces and Its Application
- Affine Weyl Group Symmetry of the Garnier System
- Exact Eigenvalues and Eigenfunctions Associated with Linearization for Chafee-Infante Problem