Characterization of Void Coalescence in Alpha-Iron in the Presence of Hydrogen
スポンサーリンク
概要
- 論文の詳細を見る
Characteristics of void coalescence process due to hydrogen load effects in the multiple void array are simulated using the finite element method. The goals of this paper are to characterize the effects of hydrogen on the void coalescence process within the multiple void array, and to determine the void array and void volume fraction configuration in which hydrogen has the strongest effect on the occurrence of void coalescence. We use the couple analyses between the large deformation elastic-plastic analysis in the presence of hydrogen for structural analysis and hydrogen diffusion analysis using the hydrogen enhanced localized plasticity (HELP) theory. These coupled analyses are applied to the five different models with the different void volume fraction and void array. The numerical results show that both hydrogen and the void characteristics - void array and void volume fraction - affect metallic material failure. The internal necking void coalescence occurs in the square void array while the void sheet mode of coalescence occurs in the diagonal void array. Hydrogen has the strongest effect on the occurrence of void coalescence when the void volume fraction is large and the void array is square, induces a pronounced localized plastic deformation at the ligament between voids, and is present in high concentrations in regions with high values of the equivalent plastic strain.
著者
-
Kanayama Hiroshi
Department Of Intelligent Machinery And Systems Graduate School Of Engineering Kyushu University
-
Kanayama Hiroshi
Department of Mechanical Engineering, Faculty of Engineering, Kyushu University
-
PREMONO Agung
Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University
関連論文
- One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure
- Balancing Domain Decomposition for Non-stationary Incompressible Flow Problems Using a Characteristic-curve Method
- A Scalable Balancing Domain Decomposition Based Preconditioner for Large Scale Heat Transfer Problems
- A Numerical Method for 3-D Eddy Current Problems
- A Finite Element Analysis of 3-D Eddy Current Problems Using an Iterative Method
- Gap and Subgap Structures of Niobium Observed by Radio Frequency Current Noise in Josephson Point Contact
- F3-3 不完全バランシング前処理を用いた非定常非圧縮性粘性流解析(F3. 低炭素社会向けシミュレーション技術)
- F2-5 A One-Way Coupled Crystalline Plasticity-Transient Hydrogen Diffusion Analysis to Simulate the Effect of the Heterogeneity of Stress-Strain States on Hydrogen Distributions in Microstructure
- F2-3 Balancing Domain Decomposition for Non-stationary Incompressible Flow Problems Using a Characteristic-curve Method
- F2-6 A Finite Element Analysis of Hydrogen Diffusion in a Stainless Steel Containing Strain-Induced Martensite
- Finite Element Simulation of Tensile Tests for α-Iron in the Presence of Hydrogen
- Characterization of Void Coalescence in Alpha-Iron in the Presence of Hydrogen
- Numerical Analysis of a Three-Dimensional Sandwich Model for Investigating the Effect of Using the Pore Size Distribution
- F101 BDD前処理の統一的構築方法についての一考察(F1.低炭素社会向けシミュレーション技術,フォーラム)
- K15 (Kl計算力学)
- F104 Numerical Simulations of Hydrogen-Plasticity Interactions in Metallic Materials
- F404 Finite Element Simulation of Hydrogen Effects on the Tensile Properties of Metals and Alloys