Effect of Material and Thickness about Tail Fins on Propulsive Performance of a Small Fish Robot
スポンサーリンク
概要
- 論文の詳細を見る
The swimming velocity of fish robots are extremely low in comparison with actual live fishes. To investigate the superior propulsive efficiency of actual fish and find measures to improve the propulsive performance of fish robots, a flexible fish robot was developed. The effects of the flexibility of tail fin on the propulsive force were investigated by using the fish robot and three-dimensional CFD. Consequently, the flexibility of tail fin is very important for fish robots to swim efficiently, because the vortex rings generated from a flexible tail fin is useful to maintain reverse Karman vortices for a long time.
著者
-
Wakisaka Tomoyuki
Department Of Mechanical And Physical Engineering Graduate School Of Engineering Osaka City Universi
-
Takada Yogo
Department Of Mechanical And Physical Engineering Graduate School Of Engineering Osaka City Universi
-
Nonogaki Motohiro
Department of Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University
-
Nakanishi Yukinobu
Department of Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University
-
Araki Ryosuke
Department of Mechanical and Physical Engineering, Graduate School of Engineering, Osaka City University
関連論文
- Effect of Material and Thickness about Tail Fins on Propulsive Performance of a Small Fish Robot
- Numerical Prediction of Mixture Formation and Combustion Processes in Premixed Compression Ignition Engines(Recent Combustion Technology in Internal Combustion Engines)
- (1-16) Numerical Prediction of Mixture Formation and Combustion Processes in Premixed Compression Ignition Engines((NCS-1)Novel Combustion Systems 1-Homogeneous Charge, Premixed Charge Compression Ignition Engines)
- Construction of a Chemical Kinetic Model for Three-dimensional Numerical Analysis of the Combustion in a Natural Gas Engine Ignited with Gas Oil
- Application of a Genetic Algorithm to the Optimization of Rate Constants in Chemical Kinetic Models for Combustion Simulation of HCCI Engines(Advanced Combustion Technology in Internal Combustion Engines)
- Application of a Genetic Algorithm to the Optimization of Rate Constants in Chemical Reaction Submodels for Engine Combustion Simulation(Computation Technology)
- Limits of Flame Propagation in Two-Stroke Cycle Gasoline Engines
- Improvement in a droplet breakup model for numerical analysis of fuel sprays
- Numerical Prediction of Gas Flow in the Intake Ports of Four-Cycle Internal Combustion Engines : Improvement of Accuracy by Applying a Porosity Approach
- Numerical Prediction of Gas Flow in the Intake Ports of Four-cycle Internal Combustion Engines : 1st Report, Method of Numerical Analysis
- Numerical Simulation of Gas Flows in the Cylinders of Four-stroke Cycle Ergines : 1st Report, Analysis of the Process of Swirl Generation during Intake Stroke
- Effect and limitation of tuning accelerator pedal sensitivity by DBW
- Turbulence characteristics in Internal Combustion Engines
- Effects of Mixture Turbulence on the Limits of Flame Propagation
- Optional Tuning of Automobile Accelerator Pedal Sensitivity with Software Torque Meter
- HC3-3: Prediction of Ignition Timing and Combustion Process in Gasoline HCCI Engines by Means of Zero-dimensional Chemical Kinetics Calculation in Consideration of Combustion Characteristic Time(HC: HCCI Combustion,General Session Papers)
- CT2-1: Application of a Reduced Elementary Reaction Scheme to Three-dimensional Numerical Simulation of Knocking Phenomenon in a Spark Ignition Engine Fueled by LPG-DME Mixture(CT: Combustion, Thermal and Fluid Science,General Session Papers)