Torsional Deformation and Fatigue Properties of TiNi SMA Thin Strip For Rotary Driving Element
スポンサーリンク
概要
- 論文の詳細を見る
In order to develop the rotary driving element with SMA thin strip, the torsional deformation and fatigue properties of a TiNi SMA thin strip were investigated. The results obtained are summarized as follows. (1) In the SMA thin strip subjected to torsion, the MT appears along the edge of the strip due to elongation of the edge of the strip and grows to the central part. (2) The number of cycles to failure decreases with an increase in the maximum angle of twist in torsion fatigue. The fatigue life in pulsating torsion is longer than that in alternating torsion by five times. The fatigue limit exists in a certain value of disspated work of the strip in each cycle. (3) Based on the two-way motion of a lifting model by using two kinds of SMA thin strip, it is confirmed that the two-way driving element with a small and simple mechanism can be developed by using the SMA thin strips.
著者
-
Tobushi Hisaaki
Department Of Mechanical Engineering Aichi Institute Of Technology
-
Pieczyska Elzbieta
Institute Of Fundamental Technological Research Polish Academy Of Sciences
-
MIYAMOTO Kouji
Department of Mechanical Engineering, Aichi Institute of Technology
-
DATE Kousuke
Department of Mechanical Engineering, Aichi Institute of Technology
関連論文
- Bending Fatigue Properties of a Superelastic Thin Tube and a High-Elastic Thin Wire of TiNi Alloy
- Pseudoelasticity of TiNi Shape Memory Alloy : Dependence on Maximum Strain and Temperature
- Stress-Strain-Temperature Relationship Associated with the R-Phase Transformation in TiNi Shape Memory Alloy
- Stress-Strain-Temperature Relationships of TiNi Shape Memory Alloy Suitable for Thermomechanical Cycling
- Cyclic Deformation of a Bias-Type Two-Way Shape Memory Component using TiNi Alloy
- Recovery Stress and Recovery Strain of TiNi Shape Memory Alloy : Cyclic Properties under Constant Residual Strain and Constant Maximum Stress
- Recovery Stress Associated with R-Phase Transformation in TiNi Shape Memory Alloy : Properties under Constant Residual Strain
- Stress-Strain-Temperature Relationship Associated with the R-Phase Transformation in TiNi Shape Memory Alloy : Influence of Shape Memory Processing Temperature
- Deformation of a Thin-walled Tube of Softened Celluloid under Cyclic Torsional Stress with Superimposed Constant Axial Stress
- Deformation Behaviour of Softened Celluloid under Complex Loading : Along Orthogonal Bi-linear Stress Trajectory
- Influence of Strain Rate on Deformation Properties of TiNi Shape Memory Alloy
- Cyclic Deformation of TiNi Shape Memory Alloy
- Thermomechanical properties of polyurethane-shape memory polymer foam
- Fatigue Properties of TiNi Shape Memory Alloy
- Thermomechanical Properties of Shape Memory Polymer and their Applications(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Divisio
- Influence of Strain Ratio on Bending Fatigue Life and Fatigue Crack Growth in TiNi Shape-Memory Alloy Thin Wires
- Deformation Properties of TiNi Shape Memory Alloy
- The Estimation of Temperature Rise in Low-Cycle Fatigue of TiNi Shape-Memory Alloy
- Deformation and Rotary Driving Characteristics of a Shape-Memory Alloy Thin Strip Element
- Subloop Deformation Behavior of TiNi Shape Memory Alloy Subjected to Stress-Controlled Loadings
- Martensite and Reverse Transformations in TiNi SMA during Tension Test Investigated by Advanced Infrared Technique
- Superelastic Deformation Behaviors Based on Phase Transformation Bands in TiNi Shape Memory Alloy
- Mechanical Properties of Shape Memory Polymer of Polyurethane Series : Basic Characteristics of Stress-Strain-Temperature Relationship
- Torsional Deformation and Fatigue Properties of TiNi SMA Thin Strip For Rotary Driving Element
- Superelastic Deformation of TiNi Shape Memory Alloy Subjected to Various Subloop Loadings
- Impact of Strain Rate on Thermomechanical Coupling Effects in TiNi SMA Subjected to Compression